Marcus Vinicius Herbst Rodrigues

Estudo do comportamento hemodinâmico, da troca gasosa, da mecânica respiratória e da análise do muco brônquico na aplicação de técnicas de remoção de secreção brônquica em pacientes sob ventilação mecânica

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Área de concentração: Cardiologia

Orientadora: Dra Maria Ignêz Zanetti Feltrim

SÃO PAULO 2007

Marcus Vinicius Herbst Rodrigues

Estudo do comportamento hemodinâmico, da troca gasosa, da mecânica respiratória e da análise do muco brônquico na aplicação de técnicas de remoção de secreção brônquica em pacientes sob ventilação mecânica

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Área de concentração: Cardiologia

Orientadora: Dra Maria Ignêz Zanetti Feltrim

SÃO PAULO 2007

À minha família,

...em especial a minha querida, amada e saudosa Vó Leonor.

AGRADECIMENTOS

A DEUS por me permitir retomar a minha missão, agora trilhando pelos caminhos da FISIOTERAPIA.

Aos meus pais Carlos e Iara, e minha irmã Karol por aceitarem a minha ausência, pelo apoio irrestrito e amor incondicional.

A minha querida e amada Poliana sempre presente dando-me força e apoio técnico, científico e sentimental.

Aos pacientes e familiares, que mesmo em um momento tão difícil entenderam que de alguma maneira poderiam contribuir para o bem do próximo.

A minha orientadora Dra Maria Ignez, pelo total apoio ao projeto desde sua idealização, tornando possível sua concepção e pela incansável lapidação desta obra.

Aos colegas Wagner, Rafael, Milton pelo apoio no início deste projeto, Carol e Rodrigo pela grande ajuda na execução das manobras, aos colegas da REC II pela coleta das assinaturas, Cosme e Fernanda sempre dispostos a ajudar na disponibilização dos equipamentos, Dra Emilia Nozawa pelo apoio, permissão e facilitação na execução do projeto e a todos os colegas do Serviço de Fisioterapia pelo apoio e pela torcida.

Ao amigo Marcelo Fernandes sempre disposto a compartilhar todas as informações necessárias para execução da tese e pelas sábias palavras de apoio sempre na hora exata, quando caíamos no "limbo científico".

A equipe de enfermagem das UTI's cirúrgicas, pelos banhos adiantados e controles atrasados sempre em prol do rigor científico com os horários do protocolo e por toda ajuda sem a qual não conseguiríamos executar este trabalho.

A equipe médica das UTI's cirúrgicas em especial ao Prof. Dr, José Otávio pela disponibilização do espaço, pelo apoio, colaboração e incentivo a busca de respostas.

Ao Dr Raul Maranhão e equipe por ceder seu laboratório mesmo fora do horário de trabalho para pesagem do muco.

Ao Prof Dr Paulo Saldiva por nos acolher em seu laboratório.

Aos novos amigos do "laboratório de análise do muco" Regiane, Mariângela, Dra Eunara, Dr Geraldo Lorenzi e em especial, a Alessandra Choqueta pela pronta disponibilidade na árdua tarefa da análise do muco simplesmente pelo interesse científico.

A sempre amiga Mary pelo apoio e torcida desde o início da minha jornada acadêmico científica.

A Clarice Feltrim pela grande ajuda na revisão gramatical.

A Antonio Adolfo Castro pela consultoria lingüística.

Enfim, a todos que de alguma maneira fizeram parte de mais esta difícil conquista em minha vida...

Sinceramente meu MUITO OBRIGADO !!!

Esta tese está de acordo com:

Referências Bibliográficas: Padronizadas pela Faculdade de Medicina da Universidade de São Paulo – FMUSP, adaptado de International Committee of Medical Journals Editors (Vancouver).

Universidade de São Paulo. Faculdade de Medicina. Serviço de Biblioteca e Documentação. *Guia de apresentação de dissertações, teses e monografias*. Elaborado por Anneliese Carneiro da Cunha, Maria Júlia de A. L. Freddi, Maria Fazanelli Crestana, Marinalva de Souza Aragão, Suely Campos Cardoso, Valéria Vilhena. 2ª ed. São Paulo: Serviço de Biblioteca e Documentação; 2005.

Abreviatura dos títulos dos periódicos de acordo *com List of Journals Indexed in Index Medicus*.

SUMÁRIO

Lista de abreviaturas	
Lista de figuras	
Lista de tabelas	
Resumo	
Summary	
1. INTRODUÇÃO	. 01
2. OBJETIVOS	14
3. CASUÍSTICA E MÉTODO	16
3.1 Casuística	17
3.2 1ª Etapa — Pacientes sem secreção brônquica	18
3.2.1 Protocolo	19
3.3 2ª Etapa — Pacientes com hipersecreção brônquica	24
3.3.1 Protocolo	25
3.4 Estudo do muco brônquico	27
3.4.1 Transportabilidade do muco	. 28
A) Por cílios	28
B) Por tosse	30
C) Adesividade: medida do ângulo de contato	. 31
3.5 Método estatístico	33
4. RESULTADOS	. 35
4.1 1ª Etapa — Pacientes sem secreção brônquica	36
4.1.1 Casuística	. 36
4.1.2 Comparação entre os grupos ASP, BS e PZ	37
Variáveis hemodinâmicas	37
Trocas gasosas	39
Mecânica respiratória	41
4.1.3 Comparação entre os grupos BS e PZ durante a	
execução das manobras	48
4.2 2ª Etapa — Pacientes com hipersecreção brônquica	52
4.2.1 Casuística	. 52

	4.2.2 Comparação das técnicas de ASP, BS e PZ	53
	Variáveis hemodinâmicas	53
	Trocas gasosas	54
	Mecânica respiratória	56
	4.2.3 Comparação das manobras BS e PZ	60
	4.2.4 Secreção brônquica	64
5.	DISCUSSÃO	68
	5.1 Casuística	69
	5.2 Variáveis hemodinâmicas	70
	5.3 Trocas gasosas	73
	5.4 Mecânica respiratória	74
	5.5 Secreção brônquica	83
6.	CONCLUSÕES	88
7.	ANEXOS	90
	7.1 Anexo I	91
	7.1.1 Termos de Aprovação	91
	7.1.2 - Termo de consentimento: 1ª etapa	93
	7.1.3 - Termo de consentimento: 2ª etapa	95
	7.2 Anexo II Tabelas dos valores individuais da 1ª etapa	97
	7.3 Anexo III Tabelas dos valores individuais da 2ª etapa.	119
8.	REFERÊNCIAS BIBLIOGRÁFICAS	150

LISTA DE ABREVIATURAS

ASP = aspiração

bpm = batimentos por minuto

BS = bag-squeezing

CEC = circulação extracorpórea

cmH₂O = centímetros de água

Cst = complacência estática

DC = débito cardíaco

EtCO₂ = dióxido de carbono no final da expiração

FC = freqüência cardíaca

HM = hiperinflação manual

IMC = índice de massa corpórea

kg = kilograma

I/min = litros por minuto

m² = metro quadrado

máx = máximo

mín = mínimo

ml= mililitros

mmHg = milímetros de mercúrio

PaCO₂= pressão parcial arterial de gás carbônico

PAM = pressão arterial média

PaO₂= pressão parcial arterial de oxigênio

PCV= ventilação limitada a pressão

PEEP = Pressão Positiva Expiratória Final

PFE = pico de fluxo expiratório

PFI = pico de fluxo inspiratório

pH = potencial hidrogênio-iônico

PPI = pico de pressão inspiratória

PPLATÔ= pressão de platô

PZ = PEEP-ZEEP

Rexp = resistência expiratória

Rinsp = resistência inspiratória

Rva = Resistência de via aérea

SpO₂ = saturação periférica de oxigênio

UR = umidade relativa

VCV= ventilação controlada a volume

Vrel= velocidade relativa

ZEEP = Pressão Positiva Expiratória Final Zero

LISTA DE FIGURAS

Fig. 1 – Curvas de fluxo, pressão e volume capturadas antes da técnica aspiração
Fig. 2 – Curvas de fluxo, pressão e volume capturadas durante a manobra bag-squeezing
Fig. 3 – Curvas de fluxo, pressão e volume capturadas durante a manobra PEEP-ZEEP
Fig. 4 - Pneumotacógrafo acoplado ao microcomputador para aquisição e armazenamento de dados
Fig. 5 - Protocolo da 2ª etapa
Fig. 6 – Palato de rã e sistema de análise de transportabilidade por cílios.
Fig. 7 – Máquina da tosse
Fig. 8 – Sistema para avaliação do ângulo de adesividade e figura esquemática dos ângulos de adesividade
Fig. 9 – Comportamento do PPI nos grupos BS e PZ durante o tempo de estudo
Fig. 10 – Comportamento da PPLATÔ nos grupos BS e PZ durante o tempo de estudo
Fig. 11 – Comportamento do PFI nos grupos BS e PZ durante todo o estudo
Fig. 12 – Comportamento do PFE nos grupos BS e PZ durante todo o estudo
Fig. 13 – Comportamento do PPI nas técnicas BS e PZ durante todo o estudo
Fig. 14 – Comportamento do PPLATÔ nas técnicas BS e PZ durante todo o estudo
Fig. 15 – Comportamento do PFI nas técnicas BS e PZ durante todo o estudo
Fig. 16 – Comportamento do PFE nas técnicas BS e PZ durante todo o estudo

LISTA DE TABELAS

Tabela 1. Valores médios, mínimo (Min.) e máximo (Máx.) para os dados antropométricos e tempo de CEC para os grupos ASPIRAÇÃO (ASP), <i>BAG-SQUEEZING</i> (BS) e PEEP-ZEEP (PZ)	36
Tabela 2. Valores médios de freqüência cardíaca para os grupos ASPIRAÇÃO (ASP), <i>BAG-SQUEEZING</i> (BS) e PEEP-ZEEP (PZ) nos tempos Pré, 0 ao 10º minuto e 30º minuto	38
Tabela 3. Valores médios, mínimo (Min.) e máximo (Máx.) de pressão arterial média nos grupos ASP, BS e PZ, nos tempos Pré, 10º e 30º minuto	38
Tabela 4. Valores médios de saturação periférica de oxigênio para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	39
Tabela 5. Valores médios de dióxido de carbono exalado ao final da expiração para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	4
Tabela 6. Valores médios de pico de pressão inspiratória para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	4
Tabela 7. Valores médios pressão de platô para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	4:
Tabela 8. Valores médios de complacência estática nos grupos ASP, BS e PZ, nos tempos Pré, 0 ao 10º e 30º minuto	4:
Tabela 9. Valores médios da resistência inspiratória (Rinsp) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	4
Tabela 10. Valores médios de resistência expiratória (Rexp) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	4
Tabela 11. Valores médios de pico de fluxo inspiratório para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	40
Tabela 12. Valores médios de pico de fluxo expiratório para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto	4
Tabela 13. Valores médios, mínimo (Min.) e máximo (Máx.) de pico de pressão inspiratória durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e PEEP-ZEEP	48

Tabela 14. Valores médios, mínimo (Min.) e máximo (Máx.) de pressão de platô durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e PEEP-ZEEP	49
Tabela 15. Valores médios, mínimo (Min.) e máximo (Máx.) do pico de fluxo durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e PEEP-ZEEP	50
Tabela 16. Valores médios, mínimo (Min.) e máximo (Máx.) do pico de fluxo expiratório durante os 5 ciclos das manobras BAG-SQUEEZING e PEEP-ZEEP	51
Tabela 17. Valores individuais para tipo de cirurgia, tempo de CEC, dias de pós-operatório (PO) e drogas em uso	52
Tabela 18. Valores médios de freqüência cardíaca e pressão arterial média para as técnicas ASPIRAÇÃO (ASP), <i>BAG-SQUEEZING</i> (BS) e PEEP-ZEEP (PZ) nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto	54
Tabela 19. Valores médios de Saturação periférica de Oxigênio (SpO ₂) e Dióxido de Carbono Exalado ao Final da Expiração - (ETCO ₂) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto	55
Tabela 20. Valores médios de Pico de Pressão Inspiratória (PPI) e Pressão de Platô (PPLATÔ) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto	56
Tabela 21. Valores médios, mínimo (Min.) e máximo (Máx.) de Complacência estática (Cst) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto	57
Tabela 22. Valores médios de resistência inspiratória (Rinsp) e expiratória (Rexp) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto	58
Tabela 23. Valores médios de pico de fluxo inspiratório (PFI) e expiratório (PFE) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto	59
Tabela 24. Valores médios, mínimo (Min.) e máximo (Máx.) de pico de pressão inspiratória durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e PEEP-ZEEP	60
Tabela 25. Valores médios, mínimo (Min.) e máximo (Máx.) de pressão de platô durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e PEEP-ZEEP	61
Tabela 26. Valores médios, mínimo (Min.) e máximo (Máx.) de fluxo durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e	62

Tabela	27. Valores médios, mínimo (Min.) e máximo (Máx.) do pico de fluxo expiratório durante os 5 ciclos das manobras <i>BAG-SQUEEZING</i> e PEEP-ZEEP	63
Tabela	28. Valores médios, mínimo (Min.) e máximo (Máx.) de muco brônquico, em gramas, na aspiração no tempo 0 (T0) e após a aplicação das técnicas ASP, BS e PZ	64
Tabela	29. Valores médios, mínimo (Min.) e máximo (Máx.), em gramas, de muco brônquico coletado na 1ª, 2ª e 3ª técnica realizada subseqüencialmente	64
Tabela	30. Valores médios, mínimo (Min.) e máximo (Máx.) do deslocamento do muco brônquico, em milímetros, na aspiração no tempo 0 (T0) e após a aplicação das técnicas ASP, BS e PZ	65
Tabela	31. Valores médios, mínimo (Min.) e máximo (Máx.), em milímetros, do deslocamento do muco brônquico coletado na 1ª, 2ª e 3ª técnica, realizadas subseqüencialmente	65
Tabela	32. Valores médios, mínimo (Min.) e máximo (Máx.) da velocidade relativa do transporte mucociliar no palato isolado de rã do muco coletado na aspiração no tempo 0 (T0) e nas técnicas ASP, BS e PZ	66
Tabela	33. Valores médios, mínimo (Min.) e máximo (Máx.) da velocidade relativa do transporte mucociliar no palato isolado de rã do muco coletado no tempo 0 (T0) e nas 1ª, 2ª e 3ª técnicas realizadas subseqüencialmente	66
Tabela	34. Valores médios, mínimo (Min.) e máximo (Máx.) da adesividade do muco coletado na aspiração no tempo 0 (T0) e nas técnicas de ASP, BS e PZ	67
Tabela	35. Valores médios, mínimo (Min.) e máximo (Máx.) da adesividade do muco coletado no tempo 0 (T0) e na 1ª, 2ª e 3ª técnica realizadas subseqüencialmente	67

RODRIGUES MVH. Estudo do comportamento hemodinâmico, da troca gasosa, da mecânica respiratória e da análise do muco brônquico na aplicação de técnicas de remoção de secreção brônquica em pacientes sob ventilação mecânica. [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2007. 163p.

INTRODUÇÃO: A aspiração traqueal (ASP) é um procedimento de rotina em pacientes sob ventilação mecânica. Como adjuvante usa-se a técnica Bag-Squeezing (BS) que consiste na hiperinflação manual associada à compressão torácica manual expiratória seguida de ASP. Esta técnica pode apresentar algumas limitações como a desconexão do ventilador mecânico e controle precário do pico de pressão inspiratória (PPI) e pico de fluxo inspiratório (PFI). Podemos substituir o ressuscitador manual pelo próprio ventilador mecânico, alterando seus parâmetros e evitando assim a desconexão. Propusemos padronizar esta técnica e denominá-la PEEP-ZEEP (PZ); realizando-se a inflação dos pulmões aumentando a PEEP em 10 cmH₂O, por 5 ciclos respiratórios, seguido de rápida descompressão pulmonar pela redução abrupta da PEEP até 0 cmH₂0, simultâneo à compressão torácica manual. **OBJETIVOS:** Avaliar o comportamento hemodinâmico, da troca gasosa e da mecânica respiratória, na aplicação das técnicas ASP, BS e PZ e seus efeitos na remoção de secreções brônquicas em pacientes ventilados mecanicamente. MÉTODO: 1ª etapa -"Pacientes sem secreção brônquica" estudamos prospectivamente 45 pacientes, divididos aleatoriamente em 3 grupos iguais, avaliamos os efeitos da aplicação das técnicas ASP, BS e PZ nos parâmetros hemodinâmicos, na troca gasosa e na mecânica pulmonar antes, imediatamente após, do 1º ao 10° e 30° min. subsegüentemente à aplicação das técnicas. Na 2ª etapa -"Pacientes com hipersecreção brônquica", estudamos prospectivamente 15 pacientes ventilados mecanicamente, com hipersecreção brônquica submetidos às técnicas ASP, BS e PZ aleatoriamente em intervalos de 2 horas, avaliamos as mesmas variáveis da 1ª etapa, porém acompanhamos os pacientes até 120 min. após cada intervenção. Avaliamos também o peso úmido da secreção brônquica e sua reologia. RESULTADOS: 1ª etapa -

Foram semelhantes quanto aos dados antropométricos e tempos de CEC. Houve elevação da FC após aplicação de BS (98±8; 106±10), PAM e SpO₂ não se alteraram. Elevação na ETCO2 (36±6; 37±6 e 37±7; 39±8) nas técnicas BS e PZ respectivamente, sem alteração na mecânica respiratória até 30 min. após aplicação das técnicas. Durante a execução das técnicas BS e PZ observamos elevação significante do PPI (63±17 vs 17±3), PPLATÔ (22±5 vs 26±3), PFI (154±27 vs 20±5) e PFE (86±20 vs 64±10). 2ª etapa – A FC e a SpO₂ não se alteraram, houve elevação significante da PAM imediatamente após a aplicação de ASP, BS e PZ (85±12 vs 101±16, 90±12 vs 100±14, 84±10 vs 97±11). Na PZ houve diminuição na ETCO2 (36±6 vs 35±7). Não observamos alteração na mecânica respiratória até 120 min. após aplicação das técnicas. Durante a execução das técnicas BS e PZ respectivamente observamos elevação significante do PPI (45±22 vs 27±3) e PFI (91±21 vs 44±17), porém PPLATO (27±15 vs 26±3) e PFE (71±20 vs 64±13) foram semelhantes entre elas. A técnica PZ (0,54±0,5) removeu menor peso de muco úmido quando comparada a ASP (0,91±1) e BS(1,09±1), porém na análise do transporte pela tosse PZ (25±11) foi superior a ASP(33±13). **CONCLUSÕES**: Todas as técnicas removeram secreções brônquicas, não alteraram significantemente o comportamento hemodinâmico, de troca gasosa e de mecânica respiratória. BS e PZ foram capazes de aumentar o PFE, porém a nova proposta PZ permite maior controle das variáveis de mecânica respiratória.

DESCRITORES: Modalidades de fisioterapia, escarro, reologia, mecânica respiratória, respiração artificial, troca gasosa pulmonar, procedimentos cirúrgicos cardiovasculares e processos hemodinâmicos.

RODRIGUES MVHR. Airway clearance techniques in patients submitted to mechanical ventilation: A hemodynamic, gas exchange, respiratory mechanics and bronquial sputum study. [thesis]. São Paulo: "Faculdade de Medicina, Universidade de São Paulo"; 2007. 163p.

INTRODUCTION: Tracheal suction (TS) is a routine procedure in patients submitted to mechanical ventilation. In association, the bag-squeezing (BS) technique is described as a manual hyperinflation associated to a manually assisted coughing followed by TS. This technique might present few limitations as its mechanical ventilator disconnection and poor control of variables such as peak inspiratory pressure (PIP) and peak inspiratory flow (PIF). We might substitute the manual ressuscitator by the mechanical ventilator itself altering its parameters and avoiding its disconnection. We proposed to standardize this technique and named it PEEP-ZEEP (PZ); inflate the lungs increasing the PEEP in 10 cmH₂0, trough 5 respiratory cycles, followed by an abrupt pulmonary decompression bringing the PEEP to 0 cmH₂0, associated to the manually assisted coughing. **OBJECTIVES:** Assess the hemodynamic, gas exchange and respiratory mechanics variables during the use of TS, BS and PZ techniques and assess their effects in the removal of bronchial secretions in mechanically ventilated patients. METHODS: First step - "Patients without bronchial secretions" -We assessed 45 patients prospectively, divided randomically into three groups, evaluating the effects of TS, BS and PZ techniques in the haemodynamics, gas exchange and respiratory mechanics variables before, immediately after, in the 10th and 30th minute after the technique. Second step – "Patients with bronchial secretions" – We assessed 15 mechanically ventilated patients submitted to the TS, BS and PZ techniques within 2 hours, evaluating the same variables of the first step. However we followed-up the patients until 120 minutes in each technique. We also assessed the humid weight of the bronchial secretions as well as the mucus reology. **RESULTS:** Results were similar when related to antropometric data and ECC period. First step – There was a raise in the HR after the BS procedure (98±8; 106±10), MAP and SpO₂ did not altered. Raise in ETCO₂ (36±6; 37±6 and 37±7; 39±8) in the BS e PZ techniques respectively, without alteration in the respiratory mechanics until 30 minutes after the techniques. During the BS e PZ techniques, we observed a significant increase in PIP (63±17 vs 17±3), PPLATEU (22±5 vs 26±3), PIF (154±27 vs 20±5) and PEF (86±20 vs 64±10). Second step – HR and SpO₂ did not altered, there was a significant increase in MAP immediately after the TS, BS and PZ techniques (85±12 vs 101±16, 90±12 vs 100±14, 84±10 vs 97±11). The PZ technique had lower ETCO₂ (36±6 vs 35±7). We did not observed any respiratory mechanics alteration until 120 minutes after the techniques. During the BS e PZ techniques, respectively, we observed an increase in the PIP (45±22 vs 27±3) and PIF (91±21 vs 44±17), however the PPLATEU (27±15 vs 26±3) and PEF (71±20 vs 64±13) were similar. The PZ technique (0,54±0,5) remove less humid weight mucus when compared to TS (0,91±1) and BS (1,09±1), but the analysis by simulated cough machine PZ (25±11) was better then TS(33±13). CONCLUSION: All techniques remove bronchial secretions and did not altered the hemodynamic, gas exchange and respiratory mechanics significantly. BS and PZ were able to enhance the PEF, however the new proposition of the PZ technique allows a better control of the respiratory mechanics variables.

DESCRIPTORS: Physical therapy modalities, sputum, reology, respiratory mechanics, artificial respiration, pulmonary gas exchange, cardiovascular surgical procedures and hemodynamic processes

O aparelho mucociliar da árvore traqueobrônquica é a primeira linha de defesa do sistema respiratório. Ele é responsável pela depuração das partículas inaladas, que se depositam na camada de muco que recobre a superfície epitelial. A eficiência mecânica deste sistema de transporte depende da integridade e do movimento coordenado dos cílios, das propriedades físicas do muco (Puchelle et al., 1980) e da interação entre cílio e muco.

No epitélio respiratório humano, a atividade ciliar independe do controle nervoso e estimulação mecânica e parece ser uma atividade espontânea, proveniente de uma pequena região de atividade ciliar que gera ondas metacronais. A atividade ciliar é influenciada por fatores físicos e químicos como: temperatura, radiação, pH e propriedades viscoelásticas do muco (Lopez-Vidriero, 1984).

O controle da secreção da hipofase sol é de importância fundamental para o correto funcionamento do transporte mucociliar, de forma a manter os cílios em contato ideal com a epifase gel. Portanto, fica claro que prejuízos do transporte ciliar podem ocorrer se a distribuição destas duas fases, ou mesmo o volume das mesmas for alterado. Um aumento no volume da hipofase sol propicia um desacoplamento entre o cílio e o muco da epifase gel, com conseqüente retardo do transporte ciliar. Uma diminuição da hipofase sol ou aumento da epifase gel faz com que o batimento de recuperação ocorra em um meio de maior viscosidade, reduzindo, conseqüentemente, o transporte ciliar (Satir e Sleigh, 1990).

Assim, o transporte mucociliar depende da perfeita interação entre o muco e o epitélio ciliado, o que resulta na capacidade de promover um fluxo de fluído em direção à orofaringe. Este fluxo sistemático e organizado, de um meio com propriedades reológicas muito particulares, tem como conseqüência a depuração de substâncias e partículas depositadas ao longo do trato respiratório. A disfunção ou falência do transporte mucociliar pode interferir no sistema de proteção e vigilância do sistema respiratório. O aumento do tempo de contato com agentes agressores e a facilitação de colonização de bactérias predispõem o indivíduo a um maior risco de infecções respiratórias (Braga, 1990).

O fluxo de ar na árvore traqueobrônquica e sua interação com o tapete mucociliar são fenômenos complexos devido à distribuição geométrica das vias aéreas, as paredes colapsáveis, a constante mudança na velocidade do fluxo de ar e a variação das propriedades viscoelásticas do muco. Modelos simples de fluxo nas vias aéreas devem assumir condições laminares. Esta situação pode ser verdadeira nas pequenas vias aéreas e implica que a velocidade do fluxo na parede da via aérea é virtualmente zero e que não há interação entre o ar e o líquido da parede. Um modelo mais realístico, particularmente para as vias aéreas mais calibrosas, é o fluxo turbulento, no qual a velocidade do gás é alta na parede e há forte interação entre o fluxo de ar e a linha de muco da parede. Este tipo de interação gás-líquido é denominada de fluxo de duas fases, de crucial importância na remoção de muco excessivo, principalmente, em doenças endobrônquicas.

A árvore brônquica de humanos saudáveis é recoberta por uma camada mucóide com espessura de, aproximadamente 5µm, que se move sobre a superfície das vias aéreas pelo tapete mucociliar. Entretanto, nas doenças endobrônquicas esta camada pode exceder 5 mm de espessura e o clearence mucociliar torna-se inefetivo. O fluxo de duas fases, agora, torna-se um importante mecanismo de remoção, pela combinação de fluxo de ar, viscosidade e espessura do muco. Esta forte interação gás(ar)-líquido(muco) primeiro exacerba a diminuição da pressão e, depois, descola o muco da parede da via aérea (Selsby e Jones, 1990).

O clearence da árvore traqueobrônquica em indivíduos saudáveis é realizado, predominantemente, pelo transporte mucociliar e, secundariamente, pela tosse, cujo papel torna-se mais importante com a doença. Puchelle et al., 1980, ao comparar o clearence em indivíduos normais e em pacientes com bronquite crônica, observaram que o mecanismo mais efetivo nos bronquíticos foi a tosse. Para Sutton, 1984, o aumento da secreção traqueobrônquica parece ser um pré-requisito essencial para a efetividade da tosse no clearence traqueobrônquico.

Nas situações nas quais os mecanismos de defesa pulmonar estão comprometidos, as técnicas utilizadas pela Fisioterapia Respiratória estão indicadas para mobilização e eliminação de secreções brônquicas pulmonares e tornam-se importantes na evolução desses pacientes.

Pacientes sob ventilação mecânica perdem o sistema fisiológico de umidificação, aquecimento e filtragem do ar, funções que, em condições normais, são realizadas pelas narinas. Embora sistemas artificiais existam

para suprir esta deficiência, o aparelho mucociliar sofre diretamente as consequências alterando, assim, suas funções principais.

Para a realização de operações cardiovasculares é necessário que os pacientes sejam anestesiados, curarizados, intubados e colocados sob assistência ventilatória mecânica. Após o procedimento cirúrgico, esses indivíduos são encaminhados à unidade de terapia intensiva para monitorização, uma vez que podem apresentar instabilidade hemodinâmica, arritmias cardíacas, sangramentos, entre outras complicações inerentes ao próprio ato cirúrgico (Carvalho et al., 1999).

Dentre as complicações presentes no período pós-operatório, destacam-se as decorrentes da circulação extra corpórea (CEC), sendo os pulmões os órgãos de choque das alterações como edema intersticial e alveolar, atelectasias, reações inflamatórias. Em conseqüência, maior tempo de suporte ventilatório mecânico torna-se necessário (Carmona e Auler Jr, 1998).

Durante o período em que o paciente se encontra sob ventilação mecânica é necessário que as vias aéreas sejam mantidas pérvias, porém o tubo orotraqueal impossibilita a mobilização e a expectoração das secreções brônquicas de forma efetiva (Bostick e Wendelgass, 1987). Há situações em que alguns pacientes necessitam sedação prolongada, o que debilita ou suprime o mecanismo de defesa pulmonar.

A Fisioterapia Respiratória é considerada essencial em unidades de terapia intensiva no tratamento de pacientes ventilados mecanicamente, uma vez que, complicações pulmonares advindas da depressão do reflexo

da tosse, diminuição do *clearence* mucociliar e aumento da produção de muco brônquico podem levar à retenção de secreção brônquica, atelectasia e pneumonia nosocomial (Guglielminotti et al, 2000).

A aspiração traqueal foi a primeira forma encontrada para remover as secreções brônquicas em pacientes com impossibilidade de fazê-lo, sendo descrita por Thompson em 1936.

A aspiração traqueal é um componente da terapia de remoção de secreção brônquica em pacientes em ventilação mecânica. O procedimento inclui a preparação do paciente, o evento aspiração que consiste na introdução de uma sonda no tubo orotraqueal conectada a um sistema de vácuo e o cuidado posterior (Branson et al., 1993).

Os benefícios da aspiração traqueal em manter a patência das vias aéreas são evidentes, porém podem ocorrer efeitos adversos como dano à mucosa (Sackner, 1973), atelectasias (Brandstater e Muallen, 1969), reação vaso-vagal, arritmias cardíacas (Shim et al., 1969), infecção pulmonar (Storm, 1980), entre outros. A aspiração traqueal também induz a dessaturação de oxigênio (Brown, 1983). Efeitos diretos imediatamente após a sua execução podem ser encontrados como broncoconstrição temporária (Guglielminotti et al., 1998).

Efeitos colaterais da aspiração traqueal também foram estudados em diferentes formas de ventilação. Na modalidade pressão controlada (PCV) houve maior dessaturação em relação à modalidade volume controlado (VCV). Os autores sugerem que a VCV atuou como uma forma de recrutamento de unidades alveolares colapsadas, enquanto a PCV não foi

capaz de reverter o colapso. Paralelamente a estes achados, verificou-se que quanto maior o calibre da sonda utilizada na aspiração, maiores os efeitos como hipoxêmia, hipercapnia, *shunt* e perda de volume pulmonar (Almgren et al., 2004).

Como parte da rotina do procedimento de aspiração traqueal, realizase a instilação de solução salina 0,9% dentro do tubo traqueal antes do
procedimento. Entretanto, não há consenso sobre a quantidade de solução a
ser instilada, com autores utilizando 2 a 10 ml de solução salina (Ackerman,
1985; Hanley et al., 1979; Kinloch, 1999). A recomendação do uso de
solução salina, na rotina da aspiração traqueal, tem como finalidade facilitar
a remoção do muco por meio da sua dissolução ou remover uma maior
quantidade de muco por estimular uma tosse vigorosa e potente (Bostick e
Wendelgass, 1987).

A instilação de cinco ou 10 ml de solução salina em pacientes submetidos à cirurgia cardíaca, intubados por mais de 12 horas, promoveu a remoção de maior quantidade de muco quando comparado aos pacientes submetidos à técnica, porém, sem instilação (Bostick e Wendelgass, 1987).

A aspiração traqueal não é um procedimento simples; seus executores devem estar atentos e cientes para possíveis riscos e complicações, agindo com o máximo de cuidado para a necessária segurança do paciente. Porém, deve ser realizada sempre que clinicamente indicada. A freqüência da aspiração traqueal deve ser a mínima necessária para manter a patência das vias aéreas artificiais utilizadas (Branson et al., 1993).

No entanto, muitas vezes somente a aspiração é insuficiente para uma eficiente remoção de secreção brônquica devido às alterações nas propriedades reológicas do muco brônquico, sua localização e/ou quantidade. Nestes casos, os fisioterapeutas utilizam-se de outras técnicas.

A mais tradicional é a técnica introduzida em 1968 por Clement e Hübsh, denominada "Bag-Squeezing" (BS) que, em alguns países, também é chamada de hiperinflação manual com compressão torácica (HM). Em sua descrição original esta manobra era constituída de três etapas: 1^a) hiperinflação pulmonar por meio da insuflação manual, com o intuito de promover a expansão pulmonar; 2ª) manobra de compressão torácica manual na fase expiratória, com o objetivo de deslocar as secreções dentro da árvore brônquica e 3ª) remoção da secreção deslocada por meio de aspiração traqueal realizada com um cateter de sucção. Para a realização desta técnica eram necessários três profissionais. Posteriormente, esta técnica foi adaptada, sendo, então, realizada por meio de um reservatório de ar, que infla os pulmões com um volume corrente aproximado de 1000 ml, quando se atinge pressões inspiratórias entre 20 e 40 cmH₂O (Windsor et al., 1972). A insuflação deve ser realizada de maneira lenta, seguida de pausa inspiratória de dois a três segundos a fim de distribuir o gás uniformemente, propiciando, assim, a ventilação de regiões colapsadas previamente; posteriormente, a liberação rápida na fase expiratória cria um fluxo de ar turbulento carreando o muco e simulando o ato da tosse. Nesta versão não é aplicada a compressão torácica expiratória manual.

Não há estudos referentes à técnica de BS, somente relato de caso. Porém, a técnica de HM está presente na assistência aos pacientes sob ventilação mecânica com objetivos primários de remoção de secreções e reversão de atelectasias (Denehy, 1999).

Em algumas situações a hiperinflação manual promove melhora da oxigenação por aumento das pressões e volumes impostos ao sistema pulmonar durante a ventilação manual (Turki et al., 2005).

Características ventilatórias durante a hiperinflação manual foram estudadas por Clarke et al., 1999, que verificaram aumento nos valores de volume corrente, pico de pressão inspiratória e PaO₂ e decréscimo nos valores da PaCO₂ quando comparados aos obtidos durante os ciclos basais da ventilação mecânica.

Quando a hiperinflação manual foi comparada com a hiperinflação realizada no ventilador mecânico não foram evidenciadas diferenças no volume aspirado de secreções avaliado pelo peso úmido, bem como na complacência estática que aumentou nos dois regimes de tratamento (Berney et al., 2004).

Em um modelo experimental utilizando secreção artificial em um tubo de acrílico simulando a via aérea, mostrou-se que o deslocamento do muco foi maior com a hiperinflação manual do que com a do ventilador mecânico (Jones et al., 1992).

Vários estudos sugerem que a hiperinflação manual tem grande valor terapêutico, porém o pico de pressão inspiratória (PPI) necessário para efetividade da técnica ainda é desconhecido (Redfern et al., 2001). Estudos

demonstram que os ciclos da inflação pulmonar com PPI acima de 20cmH₂O podem aumentar o recrutamento alveolar (Lum et al., 1990), reduzir atelectasias (Rothen et al., 1995), melhorar a relação ventilação perfusão e trocas gasosas (Tweed et al., 1993) e a complacência do sistema respiratório (Bendixen et al., 1963).

Quando a hiperinflação manual foi adicionada às técnicas fisioterapêuticas como drenagem postural e aspiração traqueal, aumentou de forma significante a quantidade (peso) de muco retirado, a saturação de O₂, e a complacência do sistema respiratório (Hogson et al., 2000).

Durante a técnica de hiperinflação manual a colocação de um manômetro à linha do sistema pode ser útil para controlar o nível de pressão gerada pelo dispositivo (Redfern et al., 2001).

Embora a hiperinflação manual seja efetiva no tratamento de pacientes em ventilação mecânica que necessitam de terapia de remoção de secreção brônquica, este método apresenta algumas limitações. A desconexão do ventilador mecânico resulta em perda da pressão positiva expiratória final (PEEP) e fração inspirada de oxigênio bem com o resulta em controle precário do pico de pressão e fluxo inspiratório (Ciesla, 1996; Clarke et al., 1999).

Essas limitações podem ser eliminadas utilizando o próprio ventilador mecânico como recurso para a remoção de secreções brônquicas (Berney e Denehy, 2002).

A utilização de pressão positiva para este fim foi descrita inicialmente no final da década de 40 por Henry Seeler, que sugeriu a utilização de um

dispositivo mecânico denominado *insufflator-exsufflator* também conhecido como *Cof-Flator* (Bach, 1993) ou máquina da tosse. Este pressurizava as vias aéreas na fase inspiratória e auxiliava a expiração por meio de aplicação de pressão negativa na fase expiratória mimetizando assim a tosse. Este recurso mostrou-se útil para pacientes com dificuldade em eliminar secreções brônquicas pela tosse, bem como na reversão de atelectasias (Barach e Beck, 1954). No entanto, o custo elevado dificulta o seu uso em larga escala.

Recentemente, em nosso meio, surgiu a proposta da utilização do próprio ventilador mecânico, como recurso para mimetizar a tosse por meio de alterações de fluxos e pressões. Esta nova técnica inicialmente foi denominada manobra de pressão positiva expiratória final zero ou manobra ZEEP (Pressão Positiva Expiratória Final Zero). Nesta técnica, ocorre insuflação dos pulmões por meio do aumento da PEEP em 15 cmH₂O, seguido de rápida descompressão pulmonar pela redução abrupta da PEEP até zero cmH₂O, acompanhada pela vibro-compressão torácica manual (Sangean, 1998) [Comunicação Pessoal].

Teoricamente, ao aumentar a PEEP por um intervalo mínimo de 30 segundos o gás é redistribuído através da ventilação colateral, alcançando alvéolos adjacentes previamente colapsados por muco. Essa redistribuição propicia a reabertura de pequenas vias aéreas descolando o muco aderido à sua parede. Posteriormente, ao diminuir a PEEP para 0 cmH₂O, altera-se o padrão de fluxo expiratório interferindo no mecanismo de duas fases e potencializando o carreamento das secreções descoladas.

Segundo Kaneko et al., 1999, a manobra objetiva "prolongar o fluxo expiratório, por aumentar o volume corrente expirado, mimetizando a tosse e mobilizando as secreções".

Apesar desta técnica estar difundida entre os fisioterapeutas do Brasil, não há publicações sobre a padronização do método, a influência na mecânica respiratória e no sistema cardiovascular e resultados clínicos.

Em nosso estudo adotamos o termo PEEP-ZEEP, por expressar as duas fases da técnica: o aumento da PEEP e a despressurização. A compressão torácica manual foi aplicada para que se pudesse ter a mesma condição da fase expiratória na comparação com a técnica de BS.

No InCor - HC FMUSP, o Serviço de Fisioterapia tem recomendado o uso de BS como técnica padrão em pacientes sob ventilação mecânica. A técnica PEEP-ZEEP utilizando o próprio ventilador como meio, parece promissora pela simplificação de recursos envolvidos e redução no tempo de aplicação. No entanto, a escassez de dados não permite uma decisão baseada em evidências.

Diante dessa situação torna-se necessária a padronização e o estudo das técnicas utilizadas em nossa rotina diária a fim de se buscar a técnica mais efetiva para cada situação, bem como o momento ideal para a sua realização.

Estudos tornam-se necessários sobre essas técnicas a fim de conhecer: (1) seu mecanismo de ação sobre pressões e fluxos no sistema respiratório; (2) suas repercussões no sistema cardiovascular; (3) sua efetividade sobre a remoção do muco brônquico.

Com estas respostas os fisioterapeutas poderão selecionar a técnica mais adequada, propiciando um tratamento de máximo benefício e riscos mínimos.

2. Objetivos

Objetivos 15

O presente estudo teve como objetivos:

avaliar o comportamento hemodinâmico, da troca gasosa e da mecânica respiratória, na aplicação das técnicas de aspiração traqueal, *Bag-Squeezing* e PEEP-ZEEP em pacientes ventilados mecanicamente.

 avaliar os efeitos dessas técnicas na remoção de secreções brônquicas, em pacientes ventilados mecanicamente.

3. Método

Método 17

3.1 Casuística

Este estudo foi realizado nas UTI's cirúrgicas do Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo – InCor HC FMUSP, Recuperação Cardíaca I e II, no período de março de 2004 a setembro de 2007. O protocolo foi aprovado pela Comissão de Ética para Análise de Projetos de Pesquisa – CAPPesq da Diretoria Clínica do Hospital das Clínicas e da Faculdade de Medicina da Universidade de São Paulo sob nº 266/04 (Anexo I).

Para atingir os objetivos propostos, nosso estudo foi desenvolvido em duas etapas. Na 1ª etapa, estudaram-se os efeitos da aplicação das técnicas de aspiração traqueal, *Bag-Squeezing* e PEEP-ZEEP nos parâmetros hemodinâmicos, na troca gasosa e na mecânica pulmonar em pacientes recém admitidos na UTI cirúrgica, sedados, curarizados e sem secreção brônquica. Esta etapa foi denominada de "Pacientes sem secreção brônquica".

Na 2ª etapa, as mesmas técnicas foram aplicadas em pacientes intubados ou traqueostomizados, ventilados mecanicamente e que apresentavam aumento de secreção brônquica. Esta etapa foi denominada de "Pacientes com hipersecreção brônquica".

Método 18

3.2 – 1^a Etapa – Pacientes sem secreção brônquica

Nesta, foram selecionados 45 pacientes, ventilados mecanicamente, submetidos à primeira operação de revascularização do miocárdio com auxílio de circulação extracorpórea (CEC). Optamos por avaliar pacientes em pós-operatório imediato de cirurgia cardíaca, com pulmões previamente hígidos, para que pudéssemos analisar os efeitos inerentes provocados pelas técnicas, em condições de menores riscos.

Foram incluídos pacientes com idade inferior a 85 anos, de ambos os sexos, com índice de massa corpórea (IMC) <30 quilos/m², sem antecedentes de doença pulmonar prévia, com tempo de CEC inferior a 120 minutos e sem uso de assistência circulatória mecânica.

Após a verificação prévia na lista cirúrgica da operação cardíaca proposta, os pacientes eram convidados a participar do estudo. Depois de instruídos, os concordantes assinavam o Termo de Consentimento Livre e Esclarecido (Anexo I).

Após admissão na UTI cirúrgica e confirmação dos dados cirúrgicos, o caso era randomizado, por meio de sorteio, para fazer parte do grupo ASP (Aspiração Traqueal), BS (*Bag-Squeezing*) ou PZ (PEEP-ZEEP).

Foram considerados como critérios para exclusão pacientes que apresentassem a saturação periférica de oxigênio (SpO₂) menor que 92%, instabilidade hemodinâmica caracterizada pela PAM<60mmHg e/ou necessidade de uso de assistência circulatória mecânica 30 minutos antes do início do estudo.

Método 19

3.2.1 - Protocolo

Todos os pacientes estavam em posição supina, sedados com propofol (1 a 3 mg/quilo) e curarizados com benzilato de atracúrio (0,3 a 0,5 mg/quilo). Todos tinham cateter para monitorização da pressão arterial média; estavam intubados e ventilados por meio do ventilador mecânico Veolar® ou Amadeus®, em modalidade assistido/controlada, com volume corrente de 6 ml/kg, freqüência respiratória de 12 rpm, PEEP de 5 cmH₂O e FiO₂ de 1,0, utilizando sistema de umidificação através de filtro com barreira bacteriana e viral (99,999%), do tipo higroscópico/hidrofóbico, conservador de calor e umidade da marca Hygrobac S® – Mallinckrodt DAR®.

As medidas de mecânica respiratória e troca gasosa foram obtidas com auxilio do monitor de perfil respiratório CO₂SMO[®] DX8100 (DIXTAL[®]) e as medidas hemodinâmicas por meio dos monitores Model66[®] (HEWLETT PACKARD[®]) e Biomonitor7[®] (BESE[®]).

O estudo iniciou-se 30 minutos após a chegada do paciente na unidade. Os pacientes foram randomizados em 3 grupos:

O GRUPO ASP foi constituído de pacientes submetidos à aspiração endotraqueal. O ventilador foi mantido no modo ventilatório inicial, verificando-se a saturação periférica de oxigênio. A seguir, desconectou-se o paciente do ventilador, instilou-se 3ml de solução fisiológica a 0,9% na cânula orotraqueal, reconectou-se o paciente ao ventilador, no qual foi mantido por 5 ciclos respiratórios. Após, desconectou-se o paciente do ventilador e realizou-se a aspiração endotraqueal, utilizando-se uma sonda

de aspiração EMBRAMED®, número 12, com válvula para controle da sucção por, no máximo, 15 segundos. Inseriu-se a sonda com a sucção desativada até apresentar resistência; nesse momento, a sucção foi ativada e a sonda retirada por movimentos rotatórios. Em seguida, reconectou-se o paciente ao ventilador sem alterar os parâmetros iniciais e aguardou-se o retorno da saturação periférica de oxigênio aos valores basais. Repetiu-se o procedimento por três vezes.

A avaliação desses pacientes foi realizada no pré-atendimento, no 10° e 30° minuto após o término do procedimento. Foram coletadas as medidas hemodinâmicas de pressão arterial média (PAM) e freqüência cardíaca (FC); índices de troca gasosa pela saturação periférica de oxigênio (SpO₂) e dióxido de carbono no final da expiração (EtCO₂) e medidas de mecânica respiratória por meio das variáveis de pico de pressão inspiratória (PPI), pressão de platô (PPLATÔ), pico de fluxo inspiratório (PFI), pico de fluxo expiratório (PFE), resistência inspiratória (Rinsp), resistência expiratória (Rexp) e complacência estática (Cst) pulmonar. A Fig. 1 ilustra as curvas de fluxo, pressão e volume no paciente do grupo ASP antes da realização do procedimento.

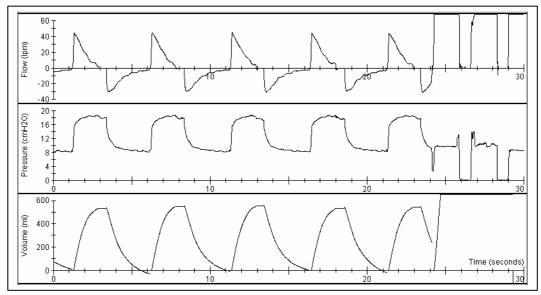


Fig. 1 – Curvas de fluxo, pressão e volume capturadas antes da técnica aspiração.

O GRUPO BS foi constituído de pacientes submetidos à técnica de hiperinflação manual com compressão manual torácica, denominada de "Bag-Squeezing". Inicialmente, conectou-se o ressuscitador manual com reservatório CHEEN HOUNG® ao fluxômetro de O2 a 10 l/min, no mínimo por dois minutos, para garantir a oferta de FiO₂ de 1,0 e colocouse a válvula de segurança do ressuscitador manual na posição adulto. Esta acertiva foi previamente testada por meio de oxímetro de linha MINIOX®III MAS, para oferecer a FiO₂ desejada. Os pacientes foram mantidos no modo ventilatório inicial, verificando-se a saturação periférica de oxigênio. A seguir, desconectou-se o paciente do ventilador, instilou-se 3 ml de solução fisiológica a 0,9% na cânula traqueal. Iniciou-se a realização da hiperinflação com o ressuscitador manual mantendo-o comprimido ao final de inspiração, a fim de gerar uma pausa inspiratória de 1 a 2 segundos. Na fase expiratória o fisioterapeuta aplicou compressão torácica manual bilateralmente. Repetiuse a manobra por cinco ciclos ventilatórios. Em seguida, realizou-se a aspiração traqueal com o mesmo procedimento descrito para o grupo ASP.

Após a aspiração, reconectou-se o paciente ao ventilador sem alterar os parâmetros iniciais e aguardou-se o retorno da saturação periférica de oxigênio aos valores basais. Repetiu-se a aplicação da técnica por três vezes.

Na Fig.2 encontra-se um caso ilustrativo do grupo BS no momento da realização das manobras.

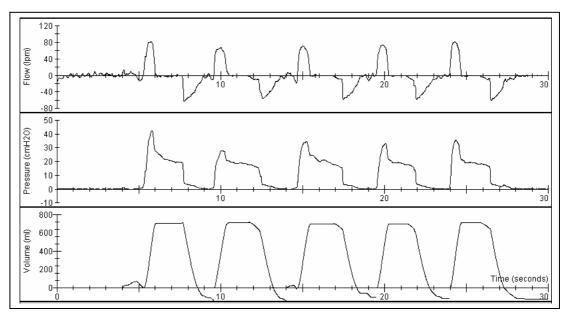


Fig. 2 - Curvas de fluxo, pressão e volume capturadas durante a manobra bag-squeezing.

A avaliação dos pacientes foi realizada no pré-atendimento, do primeiro ao 10° minuto imediato à realização das manobras e 30 minutos após o término da intervenção. Foram coletadas as variáveis de pressão arterial média (PAM), freqüência cardíaca (FC), saturação periférica de oxigênio (SpO₂), dióxido de carbono no final da expiração (EtCO₂), pico de pressão inspiratória (PPI), pressão de platô (PPLATÔ), pico de fluxo inspiratório (PFI), pico de fluxo expiratório (PFE), resistência inspiratória (Rinsp), resistência expiratória (Rexp) e complacência estática (Cst) pulmonar.

Para o **GRUPO PZ**, formado por pacientes submetidos à manobra PEEP-ZEEP, manteve-se o mesmo modo ventilatório. Inicialmente, verificouse a saturação periférica de oxigênio; desconectou-se o paciente do ventilador, instilou-se 3 ml de solução fisiológica a 0,9% na cânula traqueal. O paciente foi reconectado ao ventilador, elevou-se a PEEP a 15 cmH₂O e,

limitando o pico de pressão inspiratória em 40 cmH₂O, aguardou-se cinco ciclos ventilatórios, quando, então, a PEEP foi reduzida bruscamente até o nível zero de pressão, associada à compressão torácica manual (Fig. 3). Em seguida, desconectou-se o paciente do ventilador e procedeu-se a aspiração endotraqueal. Reconectou-se o paciente ao ventilador, aguardou-se até que a SpO₂ retornasse ao valor inicial. Repetiu-se a manobra por três vezes.

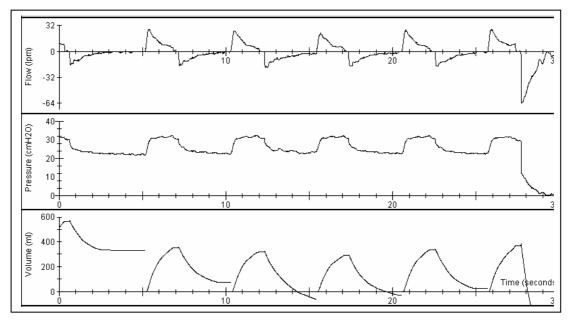


Fig. 3 – Curvas de fluxo, pressão e volume capturadas durante a manobra PEEP-ZEEP.

A avaliação desses pacientes foi realizada no pré-atendimento, do primeiro ao 10° minuto imediato à realização da manobra e 30 minutos após o procedimento. As mesmas medidas foram coletadas: PAM, FC, SpO₂, EtCO₂, PPI, PPLATÔ, PFI, PFE, Rinsp, Rexp e Cst.

Durante a realização dos cinco ciclos respiratórios nas três séries das manobras BS e PZ, as variáveis PPI, PPLATÔ, PFI e PFE foram coletadas e receberam tratamento estatístico específico.

3.3 - 2ª Etapa – Pacientes com hipersecreção brônquica

Nesta etapa foram estudados, prospectivamente, 15 pacientes cirúrgicos, em ventilação mecânica que utilizavam sistema de umidificação através de filtro com barreira bacteriana e viral (99,999%), do tipo higroscópico/hidrofóbico, conservador de calor e umidade da marca Hygrobac S® – Mallinckrodt DAR®.

Apresentavam idade inferior a 85 anos, de ambos os sexos, com índice de massa corpórea (IMC)<a 30 quilos/m², com evidência de aumento de secreção brônquica, caracterizado pela necessidade de aspiração traqueal em intervalos menores que quatro horas.

Foram excluídos do estudo pacientes que apresentavam saturação periférica de oxigênio (SpO₂) <90%; necessidade de FiO₂ > 0,6 e/ou PEEP > 12 cmH₂O; portadores de doença pulmonar ou neurológica que contraindicasse terapia de hiperinflação pulmonar; instabilidade hemodinâmica caracterizada por PAM < 60 mmHg e/ou FC > 150 bpm e presença de assistência circulatória mecânica.

Na impossibilidade do paciente em manifestar seu consentimento, a autorização foi obtida por meio de seu representante legal que, após ser informado do protocolo do estudo, assinava o Termo de Consentimento Livre e Esclarecido (Anexo I).

3.3.1 - Protocolo

Para o início do estudo, estabeleceu-se um tempo zero, no qual todos os pacientes foram submetidos à aspiração endotraqueal com coleta de muco brônquico para estudo.

A seguir, conectou-se o monitor de perfil respiratório CO₂SMO® DX8100 (Dixtal®) ao tubo endotraqueal ou de traqueostomia, o qual estava ligado a um microcomputador com software específico para leitura e armazenamento dos dados (Fig.4). As variáveis coletadas foram: saturação periférica de oxigênio (SpO₂), dióxido de carbono no final da expiração (EtCO₂), pico de pressão inspiratória (PPI), pressão de platô (PPLATÔ), pico de fluxo inspiratório (PFI), pico de fluxo expiratório (PFE), resistência inspiratória (Rinsp), resistência expiratória (Rexp) e complacência estática (Cst). As variáveis PPI, PPLATÔ, PFI e PFE foram obtidas durante todo o estudo.

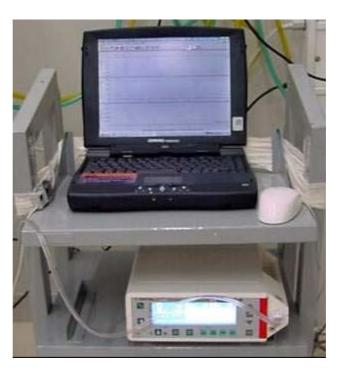


Fig. 4 – Pneumotacógrafo acoplado ao microcomputador para aquisição e armazenamento de dados.

Foram coletadas as leituras de pressão arterial média (PAM) invasiva ou não invasiva e freqüência cardíaca (FC), registradas por meio do monitor MP40[®] (Philips[®] - IntelliVue[®]).

As variáveis do estudo eram verificadas nos tempos pré-atendimento, imediatamente após e minuto a minuto até o 10° minuto, no 30°, 60° e 120° minutos após a intervenção.

Após 2 horas, o paciente era submetido a uma das técnicas de remoção de secreção, selecionadas por meio de sorteio. A aplicação das técnicas aspiração endotraqueal e *Bag-Squeezing* seguiram os mesmos procedimentos descritos na 1ª etapa, com exceção da instilação de soro fisiológico. Na técnica PEEP-ZEEP, foram mantidos os parâmetros ventilatórios ajustados no ventilador mecânico, exceto com a PEEP sendo elevada 10 cmH₂0 acima daquela presente. Nas situações nas quais o paciente apresentava respirações espontâneas, alterou-se a modalidade ventilatória para Pressão de Suporte Ventilatório (PSV) a 10 cmH₂O e a PEEP elevada 10 cmH₂O acima da ajustada previamente ou daquela presente.

As medidas das variáveis foram registradas antes e após a aplicação das técnicas, a cada minuto do primeiro ao 10° minuto, 30, 60 e 120 minutos após o término da aplicação. A cada duas horas, o paciente era submetido às outras duas técnicas, obedecendo à ordem randômica realizada no início do estudo, seguindo o modelo apresentado na figura 5.

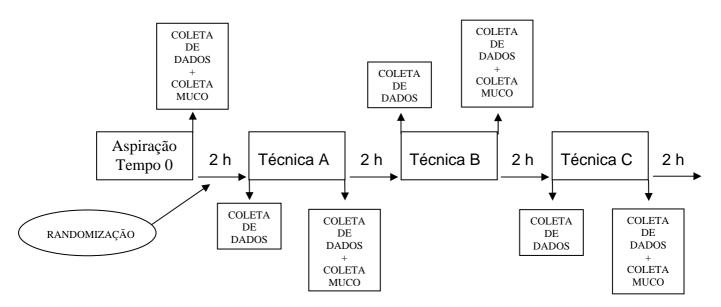


Figura 5. Protocolo da 2ª etapa.

3.4 Estudo do Muco Brônquico

O muco foi coletado diretamente da sonda de aspiração para o coletor estéril (Zammi Instrumental LTDA® modelo Broncozamm Tr®). O resíduo de muco contido na sonda de aspiração foi retirado delicadamente, com agulha estéril e colocado no coletor. Imediatamente após a coleta, a secreção brônquica foi pesada em balança digital analítica (Scientech®, modelo SA210®) com graduação mínima de 0,0001 grama e máxima de 210 gramas. Para a obtenção do peso úmido subtraiu-se o peso do frasco vazio, pesado previamente, daquele com muco. As amostras foram estocadas em tubos plásticos, "eppendorfs", cobertos com vaselina líquida e armazenada a 70°C negativos para análise posterior.

Para a realização dos testes que envolveram o muco brônquico contou-se com um avaliador cego.

No dia da análise as amostras de muco estocadas eram colocadas em temperatura ambiente (24°C±2; UR 70%±4) e a alíquota a ser estudada foi mergulhada rapidamente em éter de petróleo para a retirada do óleo. O muco foi analisado quanto à transportabilidade, pela ação ciliar e máquina da tosse, e a adesividade, pela medida do ângulo de contato.

3.4.1 Transportabilidade do Muco

A) POR CÍLIOS:

O método do palato de rã é classicamente aceito como método *in vitro* de análise da transportabilidade de uma determinada amostra de muco por meio da velocidade de transporte desse muco em um epitélio ciliado.


O palato de rã possui epitélio pseudo-estratificado com células secretoras e numerosas células ciliadas, cobertas com contínuo tapete mucoso, com espessura de 4 a 8 µm, semelhante ao epitélio das vias respiratórias. Por apresentar superfície plana, é possível observar diretamente a velocidade de uma amostra de muco colocada sobre a sua superfície (King, 1980; Rubin et al.,1990; Macchione et al. 1995).

Baseado nos procedimentos previamente estudados no Laboratório de Poluição Atmosférica e Experimental da FMUSP, o método foi realizado da seguinte forma:

Rãs da espécie R. catesbiana foram imersas em gelo por cerca de 40 minutos e, utilizando-se da hipotermia como método anestésico, foram guilhotinadas, com posterior dissecação da região do palato.

Os palatos foram colocados em um recipiente vedado e embebidos em solução de ringer e água destilada na proporção 1:1, mantidos por 48 horas a 4°C, para o esgotamento do muco da rã pela sua própria ação ciliar. Este muco foi coletado para servir de controle.

Durante o experimento o palato foi mantido em câmara de acrílico, com 100% de umidade relativa (UR) por meio de nebulização ultra-sônica (Devilbiss – Ultraneb 99, Sunrise Medicals, USA), com solução salina a 2/3 diluída em água (0,61% de NaCl), com partículas geradas menores que 10 µm de diâmetro. Acima desta câmara foi colocada uma lupa esteroscópica (Zeiss) com ocular de aumento de 10 vezes e objetiva com aumento de 0,8 vezes (Fig.6). Por uma das oculares, foi observado e cronometrado o tempo gasto pelo muco para percorrer uma distância pré-fixada de 6 mm da parte anterior para posterior do palato. Inicialmente, analisou-se a velocidade de deslocamento do muco da própria rã como medida de referência; a seguir, de cada amostra obtida após a aplicação de cada técnica, foram realizadas, cinco medidas e obtidas as médias aritméticas dos valores. A velocidade de transporte foi expressa como velocidade relativa (Vrel), sendo ela a relação entre o tempo do muco coletado durante cada técnica dividido pelo tempo de deslocamento do muco da rã (Macchione et al, 1995).

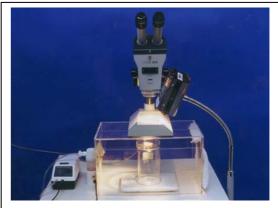


Figura 6 - Palato de rã (esquerda); sistema de análise de transportabilidade por cílios (direita).

B) POR TOSSE:

Para medida *in vitro* da transportabilidade do muco pela tosse, utilizou-se uma máquina simuladora de tosse adaptada de King, Brock e Lundell, 1985. Um cilindro de ar sintético (1) funcionou como fonte de fluxo de ar necessário para a tosse, ligado a um solenóide (2) que oclui o ar em intervalos de 2 segundos e libera o fluxo por 0,5 segundo a uma pressão de 40 polegadas/libra². O modelo de traquéia utilizado foi um tubo de acrílico de 4 mm de diâmetro interno e 133 mm de comprimento (5). A amostra de muco (6) foi depositada na superfície inferior do tubo e seu deslocamento medido com régua milimetrada (4) (Macchione et al., 1995) (Fig. 7).

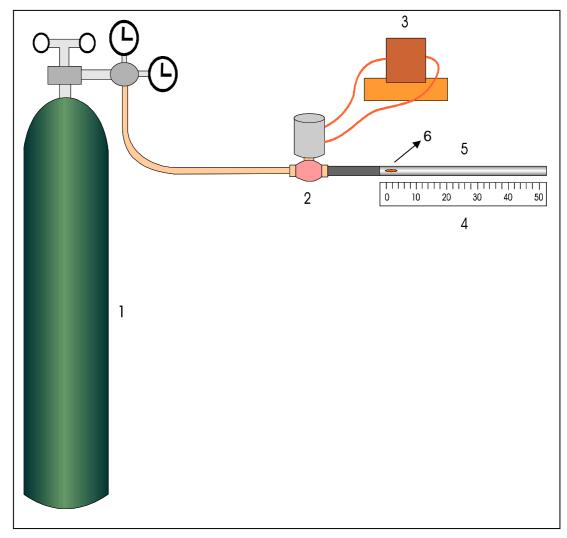


Figura 7 – Máquina da tosse: 1) Cilindro de ar, 2) Válvula solenóide, 3) Controlador da válvula solenóide, 4) Tubo acrílico, 5) Régua e 6) Muco. (Modificado de Nakagawa, 2001)

C) ADESIVIDADE: MEDIDA DO ÂNGULO DE CONTATO

Pela medida do ângulo de contato pode-se obter o grau de "wettabilidade", que consiste na habilidade de um fluído biológico espalharse quando depositado em uma superfície sólida e plana. O ângulo de contato é formado entre a tangente, a interface ar-líquido e a horizontal, no ponto onde as três fases se encontram (Fig. 8). O ângulo de contato foi observado com uma lupa presa a dois braços que se movimentam para as

laterais e para frente e para trás. Sua ocular (com aumento de 25 vezes) possui um goniômetro com escala de 0 a 180º (Fig. 8). As amostras foram depositadas em lâmina tratada anteriormente com solução sulfocrômica para retirada das cargas elétricas que interferem na medida do ângulo. Durante a análise, a lâmina foi mantida sobre um suporte de ferro temperado com furos, permitindo o fornecimento de umidificação através de um banho-maria a uma temperatura de 37ºC, para evitar o ressecamento da amostra do muco (Macchione et al., 1995).

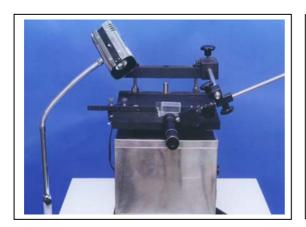


Figura 8 – Sistema para avaliação do ângulo de adesividade (esquerda). Figura esquemática dos ângulos de adesividade (direita).

3.5 Método Estatístico

As variáveis estudadas estão apresentadas por meio de média (MD) e desvio-padrão (DP).

O cálculo amostral para a 1ª etapa, baseado em estudo piloto com 10 sujeitos e levando-se em consideração um erro tipo I de 5% e tipo II de 80%, o número de pacientes estimado foi de 45 sujeitos.

Nesta 1ª etapa, para analisar o comportamento dos grupos ASP, BS e PZ quanto às variáveis antropométricas e tempo de CEC, utilizou-se o método "One Way Analysis of Variance" (Rosner, 1986). Quando a distribuição não estava dentro da normalidade, utilizou-se o teste não paramétrico de Kruskal-Wallis com o teste de "Dunn" para comparações múltiplas (Rosner, 1986). Para o estudo dos 3 grupos ao longo do tempo utilizou-se o teste "Two-Way Repeated Measures Analysis of Variance". Quando identificada diferença entre os tempos e/ou entre os grupos, prosseguiu-se a análise, utilizando-se o teste de comparações múltiplas de "Tukey" (Rosner, 1986). Para comparação do 5º ciclo das manobras Bag-Squeezing e PEEP-ZEEP utilizou-se o test t de Student não pareado.

No cálculo amostral para a 2ª etapa, baseado em literatura já publicada e levando-se em consideração um erro tipo I de 5% e tipo II de 80%, o número de pacientes estimado foi de 15 sujeitos.

Na 2ª etapa, para comparar as três técnicas (aspiração, *Bag-Squeezing* e PEEP-ZEEP) no que se refere às variáveis de mecânica respiratória, trocas gasosas e hemodinâmica nos tempos do estudo (Pré, 0 ao 10º minuto, 30º, 60º e 120º minuto), utilizou-se o método estatístico "One

Way Repeated Measures Analysis of Variance" (Rosner, 1986). Quando a distribuição não estava dentro da normalidade, utilizou-se o teste não paramétrico de Friedman com o teste de "Tukey" para comparações múltiplas (Rosner, 1986).

Para comparação do peso do muco brônquico coletado durante a realização das técnicas (aspiração, Bag-Squeezing e PEEP-ZEEP), utilizouse o método estatístico "One Way Repeated Measures Analysis of Variance" (Rosner, 1986). Quando a distribuição não estava dentro da normalidade, utilizou-se o teste não paramétrico de Friedman com o teste de "Tukey" para comparações múltiplas (Rosner, 1986).

O programa estatístico usado para análise dos dados foi o "Sigma Stat Statistical Software – Version 2.0", com nível de significância de p<0,05.

4. RESULTADOS

4.1 1ª etapa – Pacientes sem secreção brônquica

4.1.1 Casuística

Estudamos 45 pacientes divididos em 3 grupos de igual número. Os pacientes apresentavam idade entre 38 e 75 (59±10) anos, peso entre 43 e 105 (72±13) quilos, altura entre 149 e 180 (165±0,07) cm, IMC entre 17 e 32 (26±3,2) kg/m² e tempo de CEC entre 45 e 120 (91±19) minutos.

Ao comparar os grupos quanto às características antropométricas e tempo de CEC não foram encontradas diferenças estatisticamente significantes, conforme ilustra a tabela 1.

Os valores individuais encontram-se listados na tabela A1 do Anexo II.

Tabela 1. Valores médios, mínimo (Min.) e máximo (Máx.) para os dados antropométricos e tempo de CEC para os grupos ASPIRAÇÃO (ASP), BAG-SQUEEZING (BS) e PEEP-ZEEP (PZ).

	ASP	BS	PZ	р
Idade (anos)	59±10	60±11	60±9	0,814
(Mín. – Máx.)	(39 – 70)	(38 – 74)	(48 – 75)	
Peso (quilos)	71±11	75±13	73±13	0,607
(Mín. – Máx.)	(52 – 89)	(57 - 105)	(43 – 102)	
Altura (centímetros)	163±6	167±6	166±9	0,389
(Mín. – Máx.)	(151 - 172)	(157 - 180)	(149 - 178)	
IMC (quilos/metro²)	26±3	27±3	27±4	0,786
(Mín. – Máx.)	(20 – 32)	(23 – 32)	(17 – 32)	
CEC (minutos)	90±19	90±17	90±23	0,899
(Mín. – Máx.)	(60 – 120)	(70 – 120)	(45 – 115)	

4.1.2 Comparação entre os grupos ASP, BS e PZ.

Inicialmente as variáveis foram estudadas nos tempos préprocedimento, 10 e 30 minutos após o procedimento para os grupos ASPIRAÇÃO, BAG-SQUEEZING e PEEP-ZEEP.

A seguir, para os grupos *BAG-SQUEEZING* e PEEP-ZEEP as variáveis foram estudadas nos tempos pré-procedimento, de 0 ao 10º minuto e no 30º minuto após a realização das técnicas.

Variáveis hemodinâmicas

4.1.2.1 Freqüência cardíaca (FC)

A freqüência cardíaca comportou-se de forma semelhante (p=0,436) e coincidente (p=0,834) entre os grupos, sem apresentar diferença significante nos momentos pré, 10 e 30 minutos após seu término (p=0,293), conforme demonstrado na tabela 2.

Entre os grupos *BAG-SQUEEZING* e PEEP-ZEEP, a FC apresentou comportamento estatisticamente diferente (p=0,011). No grupo BS a freqüência cardíaca elevou-se significantemente do 0 ao 3º minuto, no 5º, 7º, 9º, voltando aos valores basais no 30º minuto. No grupo PZ a freqüência cardíaca não mostrou variação significante ao longo do tempo, conforme ilustra a tabela 2.

Tabela 2. Valores médios de freqüência cardíaca para os grupos ASPIRAÇÃO (ASP), BAG-SQUEEZING (BS) e PEEP-ZEEP (PZ) nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	ASP	BS	PZ
Tempos	Média ± DP	Média ± DP	Média ± DP
PRÉ	96±17	98±8	98±18
0		106±10*†	99±17
1		105±11*†	99±17
2		104±10*†	99±18
3		105±11*†	97±17
4		102±10	97±17
5		103±10*	98±16
6		103±10	97±17
7		104±10*†	97±17
8		102±10	97±18
9		103±11*	97±17
10	97±16	102±11	97±16
30	96±19	98±10	97±20

^{*} p < 0,05 versus Pré, † p< 0,05 versus 30 min.

4.1.2.2 Pressão arterial média (PAM)

Os valores médios da PAM mantiveram-se constantes no 10° e 30° minuto (p=0,146) e entre os grupos (p=0,560), como demonstrado na tabela 3.

Tabela 3. Valores médios, mínimo (Min.) e máximo (Máx.) de pressão arterial média nos grupos ASP, BS e PZ, nos tempos Pré, 10º e 30º minuto.

	ASP	BS	PZ
Pré	84±11	85±12	80±11
(Mín. – Máx.)	(61 – 110)	(62 – 113)	(63 – 100)
10º minuto	79±11	84±11	82±11
(Mín. – Máx.)	(63 – 100)	(65 – 109)	(64 – 104)
30º minuto	78±14	80±14	85±17
(Mín. – Máx.)	(45 – 105)	(56 – 103)	(58 – 125)

⁻⁻⁻ não avaliado

Trocas gasosas

4.1.2.3 Saturação Periférica de Oxigênio (SpO₂)

A saturação periférica de oxigênio comportou-se de forma diferente nos 3 grupos (p=0,010). No grupo ASPIRAÇÃO, a SpO₂ diminuiu e no grupo *Bag-Squeezing* manteve-se inalterada, porém sem diferença estatisticamente significante; no grupo PEEP-ZEEP houve aumento significante entre os momentos pré e 30° minuto (p=0,008), conforme demonstrado na tabela 4.

A SpO $_2$ não apresentou diferença estatisticamente significante entre os grupos BS e PZ (p=0,602), sendo os valores médios coincidentes (p=0,716) e semelhantes ao longo do tempo (p=0,421), conforme demonstrado na tabela 4.

Tabela 4. Valores médios de saturação periférica de oxigênio para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	SpO ₂		
	ASP	BS	PZ
Tempos	Média ± DP	Média ± DP	Média ± DP
PRÉ	99±1	98±1	97±1
0		98±1	98±2
1		98±1	97±2
2		98±1	98±1
3		98±1	98±1
4		98±1	98±1
5		98±1	98±2
6		98±1	98±2
7		98±1	98±2
8		98±2	98±1
9		98±2	98±2
10	98±1	98±2	98±1
30	98±1	98±1	98±1*

^{*} p < 0,05 versus pré / --- não avaliado

4.1.2.4 Dióxido de Carbono Exalado ao Final da Expiração - (ETCO₂)

Os valores de ETCO₂ não apresentaram diferença significante de comportamento entre os grupos ASPIRAÇÃO, BAG-SQUEEZING e PEEP-ZEEP (p=0,317), sendo coincidentes (p=0,721); porém, ao longo do tempo, houve elevação significante no 10° e no 30° minuto (p<0,001), conforme ilustra a tabela 5.

O comportamento do ETCO₂ nos grupos BS e PZ foi semelhante (p=0,462) e coincidente (p=0,240), porém seus valores elevaram-se ao longo do tempo após a aplicação das técnicas (p<0,001), conforme demonstrado na tabela 5.

Tabela 5. Valores médios de dióxido de carbono exalado ao final da expiração para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	ETCO ₂		
	ASP	BS	PZ
Tempos	Média ± DP	Média ± DP	Média ± DP
PRÉ	35±8	36±6	37±7
0		36±6	39±8*
1		36±7	39±9*
2		36±6	39±9*
3		37±6*	39±9*
4		37±7*	39±9*
5		37±7*	39±9*
6		37±6*	39±9*
7		37±7*	39±9*
8		37±7*	39±9*
9		37±7*	39 ±9*
10	37±8*	37±8*	39 ±9*
30	37±8*	38±8*	40 ±10*

^{*} p<0,001 versus Pré / --- não avaliado

Mecânica respiratória

4.1.2.5 Pico de Pressão Inspiratória (PPI)

Os valores médios de pico de pressão inspiratória foram semelhantes e coincidentes entre os grupos ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP (p=0,675 e p=0,754, respectivamente), não havendo diferença ao longo do tempo (p=0,823), conforme demonstrado na tabela 6.

Os valores da PPI nos grupos *BAG-SQUEEZING* e PEEP-ZEEP, durante os tempos Pré, 0 ao 10º minuto e 30º minuto, não diferiram entre si (p=0,966), tendo comportamentos coincidentes (p=0,840) ao longo do tempo (p=0,916), conforme demonstrado na tabela 6.

Tabela 6. Valores médios de pico de pressão inspiratória para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	PPI		
	ASP	BS	PZ
Tempos	Média ± DP	Média ± DP	Média ± DP
PRÉ	18±4	17±2	16±3
0		17±2	17±3
1		17±2	17±3
2		17±2	17±3
3		17±2	17±3
4		17±2	17±3
5		17±3	17±3
6		17±2	17±2
7		17±2	17±2
8		16±2	17±3
9		16±2	17±3
10	17±2	17±2	17±3
30	17±2	17±2	17±3

--- não avaliado

4.1.2.6 Pressão de Platô (PPLATÔ)

O comportamento da pressão de platô não apresentou diferença significante entre os grupos ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP

(p=0,901); seu comportamento foi coincidente (p=0,483) e não houve diferença no tempo (p=0,544), conforme demonstrado na tabela 7.

Nos tempos Pré, 0 ao 10º minuto e 30º minuto, nos grupos BS e PZ, a PPLATÔ, não apresentou diferença entre os grupos (p=0,963) e entre os tempos (p=0,250), conforme demonstrado na tabela 7.

Tabela 7. Valores médios pressão de platô para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	PPLATÔ			
	ASP	BS	PZ	
Tempos	Média ± DP	Média ± DP	Média ± DP	
PRÉ	16±4	14±1	15±3	
0		14±1	15±3	
1		15±2	15±3	
2		15±2	15±3	
3		15±1	15±2	
4		15±1	15±2	
5		15±1	15±2	
6		15±1	15±3	
7		15±1	15±2	
8		15±2	15±2	
9		15±1	15±1	
10	16±2	15±1	15±2	
30	15±2	15±1	15±2	

--- não avaliado

4.1.2.7 Complacência Estática (Cst)

As medidas de complacência estática foram semelhantes (p=0,213) e coincidentes (p=0,283) nos 3 grupos, sem apresentar alterações ao longo do tempo (p=0,164), conforme demonstrado na tabela 8.

Ao comparar os valores de Cst nos tempos Pré, 0 ao 10º minuto e no 30º minuto não foi constatada diferença significante entre os grupos BS e PZ (p=0,906), porém após o 7º minuto a Cst reduziu e manteve essa redução até o 30º minuto (p=0,001), conforme demonstrado na tabela 8.

Tabela 8. Valores médios de complacência estática nos grupos ASP, BS e PZ, nos tempos Pré, 0 ao 10º e 30º minuto.

<u> </u>	Cst			
	ASP	BS	PZ	
Tempos	Média ± DP	Média ± DP	Média ± DP	
PRÉ	42±9	48±9	46±11	
0		48±7	48±13	
1		47±7	46±10	
2		46±7	46±11	
3		46±6	46±12	
4		47±7	47±11	
5		46±6	46±12	
6		46±6	46±12	
7		45±6	46±12	
8		45±6*	45±11*	
9		46±6*	45±12*	
10	40±11	46±6	46±13	
30	42±11	46±7*	44±12*	

^{*} p < 0,05 versus 0 minuto / --- não avaliado

4.1.2.8 Resistência Inspiratória (Rinsp)

A resistência inspiratória das vias aéreas apresentou o mesmo comportamento entre os grupos ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP (p=0,431), com coincidência de resposta (p=0,140), sem diferença ao longo do tempo (p=0,062), conforme demonstrado na tabela 9.

Os grupos *BAG-SQUEEZING* e PEEP-ZEEP se comportaram de forma semelhante (p=0,198) e coincidente (p=0,986), com imediata elevação da Rinsp no 0 minuto (p<0,001), com retorno aos seus valores basais a partir do 1º minuto; após o 7º minuto ocorre uma maior redução da Rinsp conforme demonstrado na tabela 9.

Tabela 9. Valores médios da resistência inspiratória (Rinsp) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

1211001011	Rinsp		
	ASP	BS	PZ
Tempos	Média ± DP	Média ± DP	Média ± DP
PRÉ	8±4	7±1*	8±2*
0		8±2†	9±3†
1		8±2*†	9±3*†
2		7±2*†	8±3*†
3		7±2*†	8±3*†
4		7±2*†	9±3*†
5		7±2*†	9±3*†
6		7±2†	8±3†
7		7±2†	8±3†
8		7±2	8±3
9		7±2*	8±3*
10	8±4	6±1	8±2
30	9±3	6±2*	8±2*

^{*} p < 0,05 versus 0 minuto, † p<0,001 versus 30° minuto / --- não avaliado

4.1.2.9 Resistência Expiratória (Rexp)

Os valores médios da Rexp apresentaram diferença entre os grupos (p=0,026). No grupo ASP os valores da Rexp foram significantemente mais altos do que no grupo BS, no pré, 10° e 30° minuto (p=0,028).

Na comparação entre grupos BS e PZ houve comportamento semelhante (p=0,255) e coincidente (p=0,236), sendo o 10° e 30° minuto diferentes estatisticamente do tempo 0 (p<0,022), conforme demonstrado na tabela 10.

Tabela 10. Valores médios de resistência expiratória (Rexp) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	Rexp			
	ASP	BS	PZ	
Tempos	Média ± DP	Média ± DP	Média ± DP	
PRÉ	9±3*	8±2	8±2	
0		8±2	9±3	
1		8±2	9±3	
2		7±2	9±3	
3		7±2	8±3	
4		7±2	8±4	
5		7±2	8±3	
6		7±2	8±3	
7		7±2	8±3	
8		7±2	8±3	
9		7±2	8±3	
10	10±4*	8±2†	8±2†	
30	10±3*	8±2†	8±2†	

^{*} p < 0,05 versus BS e PZ, † p<0,001 versus 0 minuto / --- não avaliado

4.1.2.10 Pico de fluxo inspiratório (PFI)

O PFI não apresentou diferença significante entre os grupos ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP (p=0,487), sendo seu comportamento coincidente (p=0,240), porém os valores de taxa de PFI se elevaram no 10° e 30° minuto de maneira significante (p<0,001), conforme demonstrado na tabela 11.

Entre os grupos *BS* e PZ (p=0,526, p=0,789) e entre os tempos estudados (p=0,418) não houve diferença, conforme demonstrado na tabela 11.

Tabela 11. Valores médios de pico de fluxo inspiratório para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	PFI			
	ASP	BS	PZ	
Tempos	Média ± DP	Média ± DP	Média ± DP	
PRÉ	23±6	21±6	20±5	
0		21±4	20±5	
1		21±4	20±5	
2		21±5	20±5	
3		21±4	20±4	
4		21±5	20±5	
5		21±5	20±5	
6		21±4	20±5	
7		21±4	20±5	
8		21±4	20±5	
9		21±4	20±4	
10	23±7*	22±8*	21±5*	
30	24±7*	21±5*	21±5*	

^{*} p<0,001 versus Pré / --- não avaliado

4.1.2.11 Pico de fluxo expiratório (PFE)

O fluxo expiratório mostrou-se semelhante entre os grupos ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP (p=0,843) e seu comportamento foi coincidente (p=0,837), não havendo diferença ao longo do tempo (p=0,954), conforme demonstrado na tabela 12.

Os valores de PFE obtidos mostraram-se semelhantes (p=0,499) e coincidentes entre os grupos BS e PZ (p=0,592) ao longo do tempo (p=0,505), tabela 12.

Tabela 12. Valores médios de pico de fluxo expiratório para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º minuto e 30º minuto.

	PFE		
	ASP	BS	PZ
Tempos	Média ± DP	Média ± DP	Média ± DP
PRÉ	36±11	36±6	38±11
0		34±7	37±9
1		34±7	37±9
2		35±8	37±10
3		34±9	37±10
4		35±8	38±9
5		35±9	38±10
6		35±9	37±10
7		35±9	38±10
8		35±9	38±10
9		35±8	37±10
10	35±10	37±8	38±10
30	34±10	37±8	40±10

⁻⁻⁻ não avaliado

4.1.3 Comparação entre os grupos BS e PZ durante a execução das manobras

4.1.3.1 Pico de Pressão Inspiratória (PPI)

Os valores de pico de pressão inspiratória gerados nos 5 ciclos das manobras de BS foram significantemente mais altos do que na técnica PZ (p<0,001). No 5º ciclo da manobra BS os valores foram significantemente mais altos do que no 1º ciclo (p=0,034), conforme demonstrado na tabela 13.

Tabela 13. Valores médios, mínimo (Min.) e máximo (Máx.) de pico de pressão inspiratória durante os 5 ciclos das manobras *BAG-SQUEEZING* e PEEP-7FFP

	4LL I					
		1	2	3	4	5
BS	Média ± DP	60±16*	64±19*	62±17*	63±18*	64±17*†
	(Mín. – Máx.)	(38-89)	(36-105)	(35-98)	(23-103)	(44-100)
PZ	Média ± DP	26±3	28±3	28±3	28±3	29±4
	(Mín. – Máx.)	(23-36)	(24-37)	(24-37)	(25-37)	(24-36)

^{*} p < 0,001 - grupo BS versus grupo PZ

Na Fig. 9 observa-se o comportamento da PPI durante todos os momentos do estudo nos grupos BS e PZ, com aumento significante durante as manobras de BS.

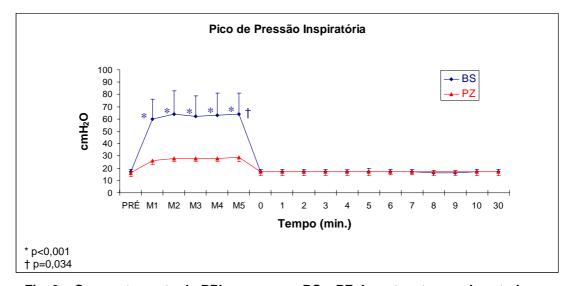


Fig. 9 – Comportamento do PPI nos grupos BS e PZ durante o tempo de estudo.

[†] p = 0.034 – versus 1° ciclo grupo BS

4.1.3.2 Pressão de Platô (PPLATÔ)

Os valores de pressão de platô gerados durante os 5 ciclos das manobras foram menores no grupo BS (p=0,022), porém sem diferença significante ao longo tempo (p=0,097), conforme ilustrados na tabela 14 e Fig. 10.

Tabela 14. Valores médios, mínimo (Min.) e máximo (Máx.) de pressão de platô durante os 5 ciclos das manobras BAG-SQUEEZING e PEEP-ZEEP

	durante 05 3	turante os 5 cicios das manobras BAG-SQUEEZING E PEEP-ZEEP						
		1	2	3	4	5		
BS	Média ± DP	21±4*	21±4*	21±5*	24±5*	22±6*		
	(Mín. – Máx.)	(16-31)	(15-32)	(16-31)	(15-31)	(16-34)		
PZ	Média ± DP	24±3	25±3	26±2	26±3	29±4		
	(Mín. – Máx.)	(21-31)	(23-33)	(23-32)	(23-34)	(20-35)		

^{*} p < 0,001 -versus grupo PZ

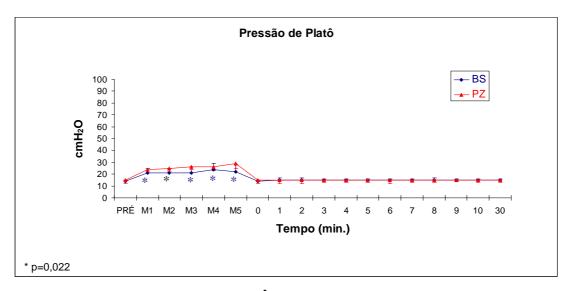


Fig. 10 – Comportamento da PPLATÔ nos grupos BS e PZ durante o tempo de estudo.

4.1.3.3 Pico de fluxo inspiratório (PFI)

Os grupos apresentaram o mesmo comportamento na geração do PFI durante as manobras (p=0,111), porém os valores obtidos em BS foram significantemente mais elevados do que em PZ (p<0,001). No 5º ciclo da manobra BS o PFI foi mais alto do que no 1º ciclo (p=0,026), conforme monstrados na tabela 15 e Fig. 11.

Tabela 15. Valores médios, mínimo (Min.) e máximo (Máx.) do pico de fluxo durante os 5 ciclos das manobras BAG-SQUEEZING e PEEP-ZEEP

	5 ciclos das manobras BAG-SQUEEZING E PEEP-ZEEP							
		1	2	3	4	5		
BS	Média ± DP	148±33*	155±27*	155±27*	154±26*	159±20*†		
	(Mín. – Máx.)	(79-180)	(101-180)	(102-180)	(103-180)	(127-180)		
PΖ	Média ± DP	19±5	20±5	20±5	20±5	21±5		
	(Mín. – Máx.)	(12-28)	(13-30)	(13-28)	(12-29)	(14-29)		

^{*} p < 0,001 -versus grupo PZ

[†] p = 0.026 – versus 1° ciclo grupo BS

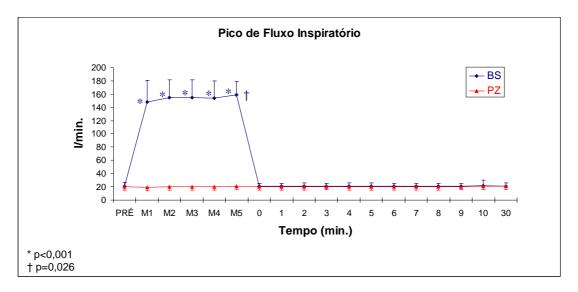


Fig. 11 – Comportamento do PFI nos grupos BS e PZ durante todo o estudo.

4.1.3.4 Pico de fluxo expiratório (PFE)

Os valores do PFE foram significantemente mais altos na técnica de BS (p<0,001). A manobra PZ, executada no 5º ciclo, promoveu elevação significante do PFE quando comparado aos demais ciclos. Comparando os grupos no 5º ciclo, observou-se aumento acentuado do PFE na manobra de BS (p<0,001), conforme ilustram a tabela 16 e Fig.12.

Tabela 16. Valores médios, mínimo (Min.) e máximo (Máx.) do pico de fluxo expiratório durante os 5 ciclos das manobras *BAG-SQUEEZING* e PEEP-

	ZEEP					
		1	2	3	4	5
BS	Média ± DP	87±19*	87±20*	87±20*	87±20*	86±20 *†
	(Mín. – Máx.)	(65-131)	(63-134)	(59-136)	(55-136)	(60-138)
PZ	Média ± DP	31±10	35±11	36±10	39±9	64±10 **
	(Mín. – Máx.)	(22-58)	(24-63)	(22-63)	(28-64)	(53-88)

^{*} p < 0,001-versus grupo PZ, † p < 0,001-versus 5 $^{\circ}$ ciclo do grupo PZ

^{**}p <0,001-versus demais ciclos do grupo PZ

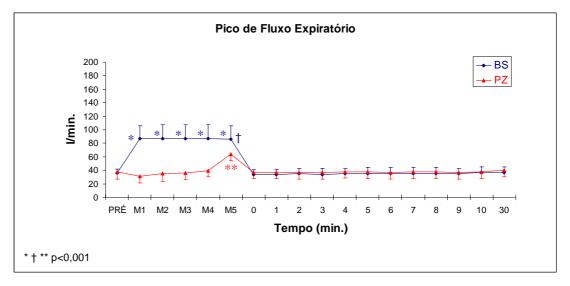


Fig. 12 – Comportamento do PFE nos grupos BS e PZ durante todo o estudo.

4.2 2ª etapa – Pacientes com Hipersecreção brônquica 4.2.1 Casuística

Foram estudados, prospectivamente, 15 pacientes (10 homens) que se encontravam entre o 5º e o 41º dia de pós-operatório (21±12), com idade entre 38 e 85 (66±14) anos, peso entre 45 e 80 (65±10) quilos, altura entre 152 e 180 (165±8) cm, IMC entre 18 e 29 (24±3,2) kg/m² e tempo de CEC entre 31 e 222 (113±54) minutos. Os dados cirúrgicos, dia de pós-operatório, drogas em uso no momento da aplicação do estudo estão listados, individualmente, na tabela 17.

Tabela 17. Valores individuais para tipo de cirurgia, tempo de CEC, dias de pósoperatório (PO) e drogas em uso.

n	Procedimento operatório	CEC min.	PO dia	Drogas Vasoativas
1	RM + Aneurismectomia de VE	141	12	Nitro
2	Troca de valva mitral	96	5	Nitro, Primacor
3	Correção de aneurisma tóraco abdominal	sem	11	Noradrenalina
4	Re-troca de valva aórtica + RM incompleta	120	10	Dobutamina+Nitro
5	Re-troca de aorta ascendente + Troca de valva aórtica + anuloplastia mitral	155	41	Dobutamina
6	RM	sem	14	Dobutamina+Nitro
7	Re-troca de valva aórtica	82	14	Dobutamina + Noradrenalina
8	RM	31	24	Dobutamina + Noradrenalina
9	RM	72	24	Dobutamina + Noradrenalina
10	RM + Retirada de mixoma em átrio direito	85	7	Nitro
11	Correção de aneurisma de aorta torácica	sem	30	sem drogas
12	Troca de valva mitral + RM	165	23	Dobutamina
13	Colocação STENT endovascular aórtico	72	41	Dobutamina
14	Dilatação traqueal	sem	28	Dobutamina
				Dobutamina +
15	Troca de valva aórtica, mitral + RM	222	36	Noradrenalina + Adrenalina

RM – Revascularização Miocárdica, VE – Ventrículo Esquerdo Nitro – Nitroprussiato de Sódio

4.2.2 Comparação das técnicas de ASP, BS e PZ.

As variáveis foram estudadas nos tempos pré-procedimento e do 0 ao 10º minuto, 30º, 60º e 120º minuto após a realização das técnicas de ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP.

Variáveis hemodinâmicas

4.2.2.1 Freqüência cardíaca (FC)

Os valores de FC se elevaram imediatamente após a aplicação das técnicas. A significância estatística ocorreu somente entre o momento 0 após a ASPIRAÇÃO, e do 3º ao 10º minuto após a aplicação do *BAG-SQUEEZING*, tabela 18.

4.2.2.2 Pressão Arterial Média (PAM)

Os valores de PAM se elevaram com a aplicação das técnicas. Esta elevação se manteve até o 8º minuto após a ASPIRAÇÃO, até o 7º minuto na *BAG-SQUEEZING* e até o 9º minuto na PEEP-ZEEP. Novamente, a maior alteração ocorreu no momento 0 da ASPIRAÇÃO e foi estatisticamente significante na comparação com os tempos a partir do 7º e 8º minuto, respectivamente, nas técnicas PZ e BS, conforme mostrado na tabela 18.

Tabela 18. Valores médios de frequência cardíaca e pressão arterial média para as técnicas ASPIRAÇÃO (ASP), *BAG-SQUEEZING* (BS) e PEEP-ZEEP (PZ) nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto.

	FREQUE	NCIA CARD	, ,	PRESSÃO ARTERIAL MÉDIA			
	ASP	BS	PZ	ASP	BS	PZ	
Tempos	MD± DP	MD± DP	MD± DP	MD± DP	MD± DP	MD± DP	
PRÉ	100±16	100±19	102±17	85±12	90±12	84±10	
0	108±18	105±17	104±17	101±16*	100±14*	97±11*	
1	105±17	101±16	101±18	98±14*	100±14*	94±10*	
2	105±18	100±16	101±18	96±14*	98±15*	92±11*	
3	104±19	99±15†	100±18	95±14*	97±16*	90±10*	
4	103±20	99±16†	101±18	95±14*	96±16*	90±10*	
5	102±18	99±16†	100±19	93±11*	96±15*	90±10*	
6	102±19	99±16†	100±19	89±11*	93±13*	87±9*	
7	101±19	99±15	100±17	87±10*	92±14*	85±11*†	
8	101±17	99±16	101±19	88±10*	89±13†	85±10*†	
9	101±18	99±15	101±17	85±11	89±14†	84±10*†	
10	101±17	99±15	101±19	83±10	88±15†	83±9†	
30	101±16	101±16	102±19	84±10	85±11†	83±12†	
60	102±19	101±16	100±15	83±10	82±11†	84±12†	
120	101±20	101±15	100±16	83±10	83±10†	86±10†	

^{*} p< 0,05

Trocas gasosas

4.2.2.3 Saturação Periférica de Oxigênio (SpO₂)

A SpO₂ não mostrou variação significante após a aplicação das técnicas, conforme demonstrado na tabela 19.

4.2.2.4 Dióxido de Carbono Exalado ao Final da Expiração - (ETCO₂)

Os valores verificados de ETCO₂ sofreram diminuições significantes imediatamente após a aplicação das técnicas ASPIRAÇÃO e PEEP-ZEEP, retornando aos valores pré-procedimento a partir do 1º minuto, conforme ilustra a tabela 19.

[†] p<0,05 versus ASP 0

Tabela 19. Valores médios de Saturação periférica de Oxigênio (SpO₂) e Dióxido de Carbono Exalado ao Final da Expiração - (ETCO₂) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto.

	C I Z IIOS temp	SpO ₂	, ,	ETCO₂			
	ASP	BS	PZ	ASP	BS	PZ	
Tempos	MD±DP	MD±DP	MD±DP	MD±DP	MD±DP	MD±DP	
PRÉ	97±2	97±2	97±1	36±5	37±7	36±6	
0	98±2	97±3	98±2	35±6*	37±7	35±7*	
1	98±2	98±2	98±1	38±6	39±6	37±6	
2	98±2	98±2	99±1	38±6	38±6	37±6	
3	98 <u>±</u> 2	98±1	98±1	37±6	37±5	36±7	
4	98±1	98±2	98±1	36±6	37±6	36±6	
5	98±1	98±1	98±1	36±6	37±6	38±7	
6	98±2	98±2	98±2	36±6	37±6	37±8	
7	98±2	98±2	98±2	37±6	38±6	38±8	
8	98±2	98±2	98±1	37±6	37±5	38±8	
9	98 <u>±</u> 2	98±2	98±1	37±6	38±6	38±7	
10	98 <u>±</u> 2	98±2	98±1	37±6	38±7	38±7	
30	98±2	97±2	97±2	37±6	38±7	38±7	
60	97±2	97±2	97±2	37±6	38±7	38±6	
120	97±2	97±2	97±2	38±6	37±6	37±8	

^{*} p<0,05 versus demais tempos

Mecânica respiratória

4.2.2.5 Pico de Pressão Inspiratória (PPI) e Pressão de Platô (PPLATÔ)

Os valores médios da PPI e de PPLATÔ não variaram significantemente ao longo do estudo (p=0,938, p=0,941), respectivamente conforme tabela 20.

Tabela 20. Valores médios de Pico de Pressão Inspiratória (PPI) e Pressão de Platô (PPLATÔ) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto.

	PPI PPLATÔ							
	4.00		D.7					
	ASP	BS	PZ	ASP	BS	PZ		
Tempos	MD± DP	MD± DP	MD± DP	$MD\pm DP$	MD± DP	MD± DP		
PRÉ	22±5	22±5	22±4	21±5	21±5	20±4		
0	22±5	22±4	22±5	20±4	20±4	20±4		
1	22±5	21±4	22±5	20±4	21±4	21±4		
2	22 <u>+</u> 4	21±4	22±5	21±4	21±3	21±4		
3	21±4	22±4	22±5	21±4	20±4	20±4		
4	21±4	21±4	21±4	20±4	20±4	20±4		
5	22 <u>+</u> 4	21±4	21±4	21±4	20±4	20±4		
6	22 <u>+</u> 4	21±4	21±4	21±4	20±4	20±4		
7	21±4	21±4	21±4	20±4	20±4	20±4		
8	22 <u>+</u> 4	21±4	21±4	21±4	20±4	20±4		
9	22 <u>+</u> 4	22±4	22±4	20±4	21±4	20±4		
10	22 <u>+</u> 4	21±4	22±4	21±4	20±4	20±4		
30	22±5	22±4	21±4	21±4	21±4	20±4		
60	22 <u>+</u> 4	22±4	22±4	21±4	20±3	20±3		
120	22±4	22±4	21±4	20±4	20±4	20±4		

4.2.2.6 Complacência estática (Cst)

Não houve alterações significantes nos valores de Cst nos diferentes momentos do estudo (p=0,665), conforme demonstrado na tabela 21.

Tabela 21. Valores médios, mínimo (Min.) e máximo (Máx.) de Complacência estática (Cst) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto.

	Cst						
	ASP	BS	PZ				
Tempos	Média ± DP	Média ± DP	Média ± DP				
PRÉ	51±29	55±23	49±19				
0	43±14	54±22	60±29				
1	42±12	50±19	52±22				
2	42±13	52±21	52±21				
3	42±12	52±18	54±17				
4	42±13	52±18	53±20				
5	46±17	52±17	53±20				
6	42±14	50±17	49±18				
7	44±14	49±17	49±22				
8	42±14	51±17	51±19				
9	42±14	48±16	49±19				
10	43±14	49±16	48±17				
30	44±15	50±18	50±18				
60	44±12	48±18	48±18				
120	43±13	55±25	54±16				

4.2.2.7 Resistência Inspiratória (Rinsp) e Resistência Expiratória (Rexp)

Houve aumento nos valores de Rinsp imediatamente após a aplicação das técnicas, com seu maior valor nas técnicas de *BAG-SQUEEZING* e PEEP-ZEEP. No entanto, diferença significante (p<0,05), ocorreu somente entre o momento 0 na técnica de BS (10±3) e demais momentos nos quais a Rinsp atingiu os menores valores (7±3), conforme ilustra a tabela 22.

Não se verificaram alterações estatisticamente significantes nos valores da Rexp com a aplicação das técnicas ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP, conforme mostra a tabela 22.

Tabela 22. Valores médios de resistência inspiratória (Rinsp) e expiratória (Rexp) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto.

		Rinsp		Rexp		
	ASP	BS	PZ	ASP	BS	PZ
Tempos	MD ± DP	MD ± DP	MD ± DP	MD ± DP	MD ± DP	MD ± DP
PRÉ	8±4,39	8±3,30	8±3,73	9±4,40	8±2,92	8±3,83
0	9±4,29	10±3,36*	10±5,72	10±4,51	9±4,13	10±5,66
1	7±3,34	8±2,83	9±4,79	7±3,56	9±3,43	8±4,75
2	8±3,21	9±3,82	8±3,78	8±3,33	9±3,49	9±4,26
3	8±4,03	8±3,55	9±4,00	8±3,75	8±3,65	8±4,14
4	8±3,19	8±2,73	8±3,24	8±3,19	8±2,97	8±3,30
5	7±4,07	8±2,60	8±3,67	8±3,58	8±2,58	8±3,65
6	8±3,33	9±3,25	8±3,04	7±3,38	8±3,36	8±3,01
7	7±3,47	8±3,01	8±3,00	8±3,35	8±3,01	8±2,93
8	8±3,36	9±2,97	8±2,95	7±3,44	9±2,93	8±3,33
9	7±4,30	9±3,07	8±2,88	7±4,06	9±3,11	8±3,29
10	7±3,21	8±3,25	8±3,06	7±3,14	8±2,87	8±3,07
30	7±3,29	8±2,85	8±2,45	7±3,20	8±2,91	8±2,48
60	7±3,52	7±3,04	8±2,61	8±3,43	7±3,03	8±2,69
120	8±3,11	8±3,49	8±3,04	8±3,04	8±3,53	8±2,94

^{*}p<0,05 versus tempo 0 da técnicas BS

4.2.2.8 Pico de fluxo inspiratório (PFI) e Pico de fluxo expiratório (PFE)

Os picos de fluxo inspiratório (PFI) e expiratório (PFE) mantiveram-se constantes mesmo após a aplicação das técnicas (p=0,191 e p=0,313 respectivamente), conforme demonstra a tabela 23.

Tabela 23. Valores médios de pico de fluxo inspiratório (PFI) e expiratório (PFE) para os grupos ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto.

	PFI			PFE		
	ASP	BS	PZ	ASP	BS	PZ
Tempos	MD± DP					
PRÉ	45±11	48±11	46±15	38±8	40±11	38±12
0	50±16	49±11	51±16	37±7	40±12	41±12
1	49±14	49±12	50±15	38±7	42±10	41±10
2	47±10	50±13	53±16	39±7	41±8	42±8
3	47±11	50±11	49±14	38±7	41±10	39±7
4	47±15	49±11	47±13	39±6	41±10	40±7
5	46±14	50±11	48±13	39±6	41±9	41±9
6	47±13	49±9	46±14	40±7	41±11	40±8
7	48±15	50±10	47±13	39±7	40±9	40±8
8	46±13	46±13	47±12	38±7	40±10	38±7
9	46±14	47±12	48±14	38±8	42±9	41±10
10	47±14	46±12	47±14	38±7	39±9	41±9
30	47±15	47±13	47±14	39±9	41±8	41±9
60	47±13	45±10	46±11	39±6	41±10	41±9
120	47±15	48±13	47±12	39±8	41±10	40±9

4.2.3 Comparação das manobras de BS e PZ

4.2.3.1 Pico de Pressão Inspiratória (PPI)

Os valores de pico de pressão inspiratória gerados nos 5 ciclos das manobras de BS foram significantemente mais altos do que na técnica PZ (p<0,001), mostrados na tabela 24.

Tabela 24. Valores médios, mínimo (Min.) e máximo (Máx.) de pico de pressão inspiratória durante os 5 ciclos das manobras *BAG-SQUEEZING* e PEEP-ZEEP

	4LL I					
		1	2	3	4	5
BS	Média ± DP	45±20*	45±26*	46±21*	43±20*	44±23*
	(Mín. – Máx.)	(20-116)	(22-117)	(23-116)	(22-108)	(19-116)
PZ	Média ± DP	27±4	27±3	27±3	27±3	27±4
	(Mín. – Máx.)	(20-42)	(20-32)	(20-32)	(20-32)	(20-38)

^{*}p<0,001

Na Fig. 13 observa-se o comportamento da PPI durante todo o estudo das técnicas BS e PZ, com aumento significante durante as manobras de BS.

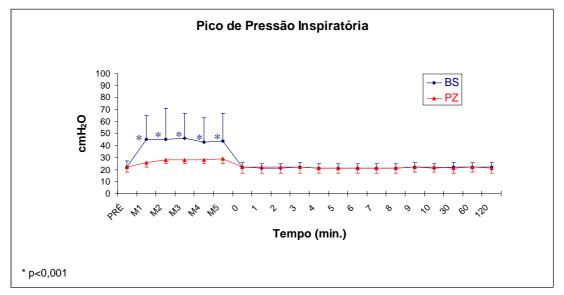


Fig. 13 – Comportamento do PPI nas técnicas BS e PZ durante todo o estudo.

4.2.3.2 Pressão de Platô (PPLATÔ)

Os valores da pressão de platô verificados nos 5 ciclos da manobra BS foram mais altos do que na manobra PZ, porém sem atingir significância estatística (p=0,870), conforme demonstrado na tabela 25 e Fig. 14.

Tabela 25. Valores médios, mínimo (Min.) e máximo (Máx.) de pressão de platô durante os 5 ciclos das manobras *BAG-SQUEEZING* e PEEP-ZEEP

	darante 03 0 010103 das manobras BAO 040EEEMO CT EEL EEE					
		1	2	3	4	5
BS	Média ± DP	25±12	27±15	28±16	26±14	27±16
	(Mín. – Máx.)	(9-64)	(11-72)	(10-81)	(10-76)	(9-77)
PZ	Média ± DP	26±3	26±3	26±3	26±3	26±3
	(Mín. – Máx.)	(19-34)	(20-32)	(20-32)	(20-32)	(20-32)

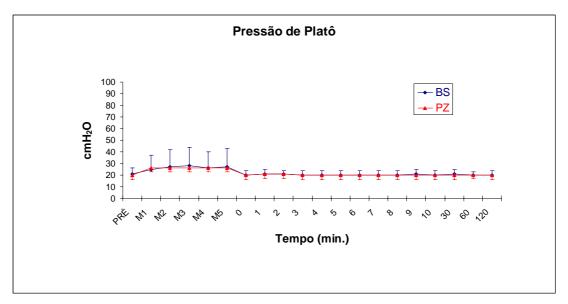


Fig. 14 – Comportamento da PPLATÔ nas técnicas BS e PZ durante todo o estudo.

4.2.3.3 Pico de fluxo inspiratório (PFI)

O PFI foi sempre maior nos ciclos das manobras de BS do que nos ciclos de PZ (p<0,001), conforme ilustram a tabela 26 e a figura 15.

Tabela 26. Valores médios, mínimo (Min.) e máximo (Máx.) de fluxo durante os 5 ciclos das manobras *BAG-SQUEEZING* e PEEP-ZEEP.

	Cicios das manobias Bito oquellino ot elli elli i					
		1	2	3	4	5
BS	Média ± DP	87±20*	91±20*	92±23*	94±20*	90±24*
	(Mín. – Máx.)	(47-138)	(51-127)	(53-162)	(55-138)	(51-141)
PZ	Média ± DP	45±17	44±15	43±16	44±17	45±19
	(Mín. – Máx.)	(20-101)	(20-94)	(21-94)	(21-96)	(20-126)
+ 0.00				•		

^{*}p<0,001

A Fig. 15 apresenta o comportamento do PFI antes, durante e após a realização das técnicas de BS e PZ. A diferença significante ocorreu durante as manobras de BS.

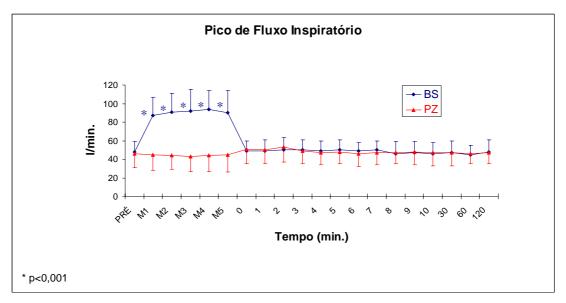


Fig. 15 – Comportamento do PFI nas técnicas BS e PZ durante todo o estudo.

4.2.3.4 Pico de fluxo expiratório (PFE)

Os valores do PFE foram significantemente mais altos na técnica de BS quando comparados aos 4 primeiros ciclos da técnica PZ (p<0,001). A manobra PZ foi executada no 5º ciclo, o que promoveu elevação significante do PFE. A análise do PFE no 5º ciclo entre BS e PZ não evidenciou diferença estatisticamente significante (p=0,177), conforme demonstrado na tabela 27 e Fig. 16.

Tabela 27. Valores médios, mínimo (Min.) e máximo (Máx.) do pico de fluxo expiratório durante os 5 ciclos das manobras *BAG-SQUEEZING* e PEEP-ZEEP.

durante os 3 cicios das manobras DAG-3QULLZING E FLLF-ZLLF.					
	1	2	3	4	5
Média ± DP	70±24*	71±21*	73±24*	73±19*	71±20*
(Mín. – Máx.)	(29-156)	(29-111)	(31-180)	(28-126)	(29-119)
Média ± DP	29±11	30±10	32±11	32±11	64±13†
(Mín. – Máx.)	(15-60)	(16-59)	(18-58)	(16-58)	(40-102)
	Média ± DP (Mín. – Máx.) Média ± DP	1 Média ± DP (Mín. – Máx.) Média ± DP (29-156) 29±11	1 2 Média \pm DP $70\pm24^*$ $71\pm21^*$ (Mín. – Máx.) $(29-156)$ $(29-111)$ Média \pm DP 29 ± 11 30 ± 10	1 2 3 Média \pm DP $70\pm24^*$ $71\pm21^*$ $73\pm24^*$ (Mín. – Máx.) $(29-156)$ $(29-111)$ $(31-180)$ Média \pm DP 29 ± 11 30 ± 10 32 ± 11	1 2 3 4 Média \pm DP $70\pm24^*$ $71\pm21^*$ $73\pm24^*$ $73\pm19^*$ (Mín. – Máx.) $(29-156)$ $(29-111)$ $(31-180)$ $(28-126)$ Média \pm DP 29 ± 11 30 ± 10 32 ± 11 32 ± 11

^{*} p<0,001 versus 1,2,3 e 4 ciclos da técnica PZ †p<0,001 versus 1,2,3 e 4 ciclos da técnica PZ

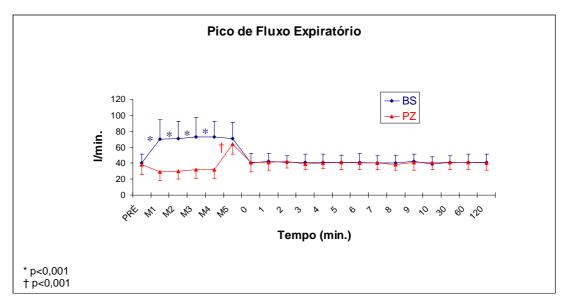


Fig. 16 – Comportamento do PFE nas técnicas BS e PZ durante todo o estudo.

4.2.4 Secreção brônquica

4.2.4.1 Peso úmido

O peso úmido da secreção traqueal obtido no tempo 0 (aspiração inicial), diferiu significantemente dos demais momentos do estudo. Na análise do peso úmido obtido após a realização das técnicas ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP, observamos diferença estatisticamente significante somente entre as técnicas BS e PZ (p=0,027), conforme tabela 28.

Tabela 28. Valores médios, mínimo (Min.) e máximo (Máx.) de muco brônquico, em gramas, na aspiração no tempo 0 (T0) e após a aplicação das técnicas ASP, BS e PZ.

	ТО	ASP	BS	PZ
Média	3,61±4,06*	0,91±1,00	1,09±1,28	0,54±0,54**
(Mín. – Máx.)	(0,23 - 13,52)	(0.09 - 4.10)	(0.01 - 4.62)	(0.02 - 1.93)

^{*} p<0,05 ,

Para verificação do efeito acumulativo de uma técnica sobre a outra, analisou-se o peso do muco brônquico na ordem seqüencial, ocorrendo diferença significante entre seus valores a partir da 2a técnica (p<0,05). Quando comparados os 3 momentos, esses valores foram semelhantes (p=0,076), conforme tabela 29.

Tabela 29. Valores médios, mínimo (Min.) e máximo (Máx.), em gramas, de muco brônquico coletado na 1ª, 2ª e 3ª técnica realizada subseqüencialmente.

	T0	1 ^a	2 ^a	3 ^a
Média	3,61±4,06	1,13±1,12	0,69±1,18*	0,71±0,56*
(Mín. – Máx.)	(0,23 - 13,52)	(0,11 – 4,10)	(0,01 – 4,62)	(0.08 - 1.93)

^{*} p<0,05

^{**} p=0,027 BS versus PZ

4.2.4.2 Deslocamento do muco utilizando a máquina simuladora da tosse

Na análise do deslocamento do muco brônquico, avaliado pela máquina simuladora da tosse verificamos diferença significante entre as técnicas ASP e PZ (p=0,009); bem como, quando na comparação das 3 técnicas com o T0 (p<0,001), conforme tabela 30.

Tabela 30. Valores médios, mínimo (Min.) e máximo (Máx.) do deslocamento do muco brônquico, em milímetros, na aspiração no tempo 0 (T0) e após a aplicação das técnicas ASP, BS e PZ.

	T0	ASP	BS	PZ
Média	55,93±26,53*	32,53±13,23	28,07±15,13	24,69±10,66**
(Mín. – Máx.)	(21 – 108)	(7 – 65)	(7 – 70)	(2 – 48)

^{*} p<0,001

p=0,009 ASP versus PZ

Analisando-se o deslocamento do muco brônquico removido no 1º, 2º e 3º momento de aplicação, independente da técnica, observou-se diferença significante do tempo 0 comparado aos demais (p<0,001). Na análise dos 3 momentos, houve menor deslocamento após 4 horas do início do estudo, na 2ª aplicação de uma das técnicas, quando comparada com os valores obtidos na 1ª aplicação (p=0,018), conforme tabela 31.

Tabela 31. Valores médios, mínimo (Min.) e máximo (Máx.), em milímetros, do deslocamento do muco brônquico coletado na 1ª, 2ª e 3ª técnica, realizadas subseqüencialmente.

	ТО	1 ^a	2 ^a	3a
Média	55,93±26,53*	32,07±14,05	24,98±13,14**	28,00±12,51
(Mín. – Máx.)	(21 – 108)	(11 – 70)	(2 – 46)	(7 – 65)

^{*} p<0,001

^{**}p=0,018 versus 1ª técnica

4.2.4.3 Velocidade relativa do transporte mucociliar no palato isolado de rã

Na comparação da velocidade relativa do transporte mucociliar no palato isolado de rã do muco brônquico coletado durante a realização das técnicas, não se verificou diferença significante entre elas (p=0,066); porém, a técnica BS apresentou valores significantemente menores quando comparados ao tempo 0 (p=0,007), conforme demonstrado na tabela 32.

Tabela 32. Valores médios, mínimo (Min.) e máximo (Máx.) da velocidade relativa do transporte mucociliar no palato isolado de rã do muco coletado na aspiração no tempo 0 (T0) e nas técnicas ASP, BS e PZ.

	T0	ASP	BS	PZ
Média	0,94±0,18	0,87±0,31	0,72±0,25*	0,78±0,28
(Mín. – Máx.)	(0,45 – 1,19)	(0,37 – 1,55)	(0,36 – 1,29)	(0,30-1,37)

^{*} p<0,05

Na análise seqüencial, observou-se diferença significante do tempo 0 quando comparado a 2ª técnica (p=0,030), porém entre as técnicas realizadas após 2, 4 e 6 horas do início do estudo não verificamos diferença (p=0,535), conforme ilustra a tabela 33.

Tabela 33. Valores médios, mínimo (Min.) e máximo (Máx.) da velocidade relativa do transporte mucociliar no palato isolado de rã do muco coletado no tempo 0 (T0) e nas 1ª, 2ª e 3ª técnicas realizadas subseqüencialmente.

	T0	1 ^a	2 ^a	3 ^a
Média	0,94±0,18	0,82±0,30	0,75±0,27*	0,80±0,29
(Mín. – Máx.)	(0,45 – 1,19)	(0,36 – 1,55)	(0,30 – 1,37)	(0,37 – 1,39)

^{*}p=0,030

4.2.4.4 Adesividade: medida do ângulo de contato

No estudo da adesividade do muco, não houve diferença significante entre as técnicas ASPIRAÇÃO, BAG-SQUEEZING e PEEP-ZEEP (p=0,874); porém, quando comparadas ao tempo 0, apresentaram valores de adesividade significantemente maiores (p<0,001), conforme demonstrado na tabela 34.

Tabela 34. Valores médios, mínimo (Min.) e máximo (Máx.) da adesividade do muco coletado na aspiração no tempo 0 (T0) e nas técnicas de ASP, BS e PZ.

	ТО	ASP	BS	PZ
Média	18±4	23±5*	23±3*	23±4*
(Mín. – Máx.)	(12 – 24)	(14 – 34)	(17 – 28)	(16 – 33)

^{*} p<0,001

Na análise seqüencial, observou-se diferença significante no tempo 0 comparado aos demais (p<0,05). Entre as técnicas realizadas após 2, 4 e 6 horas do início do estudo a diferença não foi estatisticamente significante (p=0,584), conforme mostra a tabela 35.

Tabela 35. Valores médios, mínimo (Min.) e máximo (Máx.) da adesividade do muco coletado no tempo 0 (T0) e na 1ª, 2ª e 3ª técnica realizadas subseqüencialmente.

	T0	1 ^a	2 ^a	3 ^a
Média	18±4	23±4*	23±5*	22±3*
(Mín. – Máx.)	(12 – 24)	(16 – 34)	(16–33)	(14 – 26)

^{*} p<0,001

5. DISCUSSÃO

Nosso estudo objetivou verificar as alterações hemodinâmicas, ventilatórias e de mecânica pulmonar impostas pelas técnicas de aspiração e *bag-squeezing*, comumente utilizadas na prática clínica para remover secreções brônquicas em pacientes intubados. Adicionalmente, propusemos a sistematização de uma nova técnica, PEEP-ZEEP, que pudesse utilizar alterações nos parâmetros do próprio ventilador para promover o deslocamento das secreções. Todas foram aplicadas em pacientes submetidos a operações cardiovasculares, amostra característica de nossa Instituição.

Nossos resultados revelam que essas técnicas provocam discretas alterações hemodinâmicas imediatamente após a sua aplicação, que não requerem intervenções clínicas. As técnicas de *bag-squeezing* e PEEP-ZEEP são capazes de aumentar o fluxo expiratório com manutenção da pressão alveolar em valores considerados seguros. Todas removeram secreções brônquicas em pacientes hipersecretivos.

5.1 Casuística

Na primeira etapa de nosso estudo recrutamos pacientes que realizaram o mesmo procedimento operatório. Os grupos foram homogêneos em relação à idade, dados antropométricos e tempo de CEC. A uniformização da amostra permite excluir a influência dessas variáveis nos resultados obtidos.

Optamos por analisar o efeito das manobras em pacientes que não tivessem diagnóstico de doença pulmonar prévia registrado em prontuário, para maior semelhança entre os grupos.

Após o estudo do efeito das técnicas no sistema cardiorrespiratório, o objetivo foi verificar seu efeito na remoção do muco brônquico, por isso optamos em estudar pacientes hipersecretivos.

Foram incluídos pacientes cujo único critério fosse a presença de secreção brônquica em excesso, caracterizada pela necessidade de atendimento fisioterapêutico e/ou aspiração traqueal em intervalos menores que 4 horas. Esses pacientes apresentavam tempos diferentes de permanência na UTI, estando em uso ou não de drogas vasoativas, submetidos à diferentes procedimentos operatórios. Todavia, todos se encontravam sem uso de bloqueadores musculares.

5.2 Variáveis hemodinâmicas

O uso de pressão positiva intratorácica durante a ventilação mecânica ou em manobras fisioterapêuticas tem sido alvo de discussões e estudos, principalmente, em relação aos possíveis efeitos deletérios sobre a dinâmica cardiovascular.

Os estudos têm utilizado freqüência cardíaca e PAM como parâmetros de análise hemodinâmica (Hodgson et al, 2000; Singer et al, 1994; Stone et al, 1991). Singer et al. observaram que decréscimos da PAM em 10% dos valores pré-aplicação da técnica de Hiperinflação Manual (HM) podem causar diminuição do DC. No mesmo estudo, a FC não mostrou

alterações significativas.

Outros estudos mostram a interação entre a ventilação com pressão positiva e variáveis hemodinâmicas, pela alta correlação entre alterações na PPI e elevados volumes corrente. Essas variáveis podem causar instabilidade hemodinâmica, expressa por FC, PAM e, principalmente, retorno venoso e débito cardíaco (Auler Jr et al., 2000, Michard, 2005).

Fessler et al. (1991), demonstraram que o gradiente de pressão responsável pelo retorno venoso ao átrio direito, não diminui durante o uso da PEEP devido ao aumento proporcional da freqüência cardíaca e da resistência vascular sistêmica reflexamente mediada por barorreceptores. É interessante lembrar que este mecanismo reflexo é um importante regulador da pressão arterial sistêmica em curto prazo (Guyton e Hall, 1998).

A maioria dos estudos sobre alterações hemodinâmicas e o uso da ventilação com pressão positiva sugere que a diminuição do DC está relacionada ao aumento da pressão intratorácica aplicada durante a inspiração. Este fato associado ao aumento da pressão no átrio direito e diminuição do gradiente com a circulação venosa sistêmica, provoca diminuição no retorno venoso, nas pressões de enchimento do ventrículo direito e, conseqüentemente, do ventrículo esquerdo (Anning et al., 2003, Michard, 2005).

Os efeitos da pressão positiva no sistema cardiovascular mantêm a PAM estável no paciente normovolêmico, o que pode não ocorrer em estados de hipovolemia (Michard, 2005). Van Den Berg et al. (2002) em estudo realizado em pacientes normovolêmicos, no pós-operatório de

cirurgia cardíaca, mostraram que pressões inspiratórias acima de 20 cmH₂O produziram efeitos hemodinâmicos mínimos. Estes resultados foram atribuídos ao estado de normovolemia e, em parte, à maior pressurização do compartimento abdominal e circulação hepática, que aumenta o volume sangüíneo para o compartimento venoso sistêmico associado à compressão dos vasos pulmonares.

Nosso estudo mostrou que a FC se elevou nos momentos iniciais após a realização das técnicas de aspiração e *bag-squeezing*, retornando aos valores basais antes do 10° minuto e mantendo-se inalterada na técnica PZ. Embora a FC tenha se elevado, o seu acréscimo não provocou repercussão clínica significante. Na técnica PEEP-ZEEP não houve variação significante e este fato pode ser decorrente de uma menor geração de PPI. Outro fator é que nesta técnica não há desconexão do ventilador mecânico, o que pode gerar um menor estresse no sistema cardiovascular.

A pressão arterial média não mostrou alterações significantes durante a realização das técnicas nos pacientes estudados na 1ª etapa. No entanto, na 2ª etapa, percebemos que a PAM aumentou nos primeiros minutos nas três técnicas. Na técnica PZ esse aumento persistiu até o 9º minuto, enquanto que nas técnicas ASP e BS os seus valores retornaram aos basais no 8º e 7º minutos respectivamente.

Embora as alterações não sejam clinicamente significativas as manobras provocaram incremento na FC e na PAM. Esse comportamento pode ser atribuído à resposta hemodinâmica frente ao estresse imposto pela manipulação, mediado por uma reposta vasoconstritora simpática e

liberação adrenérgica como sugerem Paratz e Lipman (2006), uma vez que nesta etapa os pacientes não estavam sob profundo efeito anestésico.

5.3 Trocas gasosas

O uso da hiperinflação manual, isolada ou associada à compressão torácica como no *bag-squeezing*, é a técnica de escolha para mobilizar secreções brônquicas em pacientes ventilados mecanicamente. Por usar altos volumes pulmonares também a técnica é capaz de expandir áreas de atelectasia e melhorar a oxigenação arterial, por meio da redução do shunt pulmonar (Berney e Denehy, 2002, Hogson et al, 2000; Denehy, 1999). Jones et al (1992), em estudo randomizado, em pacientes com diferentes afecções, mostraram aumentos significantes na SpO₂ imediatamente após a hiperinflação manual, com o retorno aos valores iniciais após cinco minutos (p < 0,005).

Em nosso estudo, a SpO₂ apresentou o mesmo comportamento em todas as técnicas, sem que houvesse dessaturação em nenhuma das etapas. Esse resultado pode ser atribuído tanto ao fato de que nossos pacientes não apresentavam quadros de hipoxemia prévia à aplicação das técnicas, mesmo aqueles hipersecretivos, bem como, pela hiperoxigenação instituída previamente a aplicação das manobras.

A instilação de solução salina (0,9%), durante a aplicação das técnicas na 1^a etapa, não resultou em dessaturação, o que vai de encontro aos estudos de Kinloch (1999) e Ackerman (1985).

Uma outra forma de avaliar as trocas gasosas é por meio do EtCO₂,

sendo este, um índice de ventilação, sua elevação representa aumento de espaço morto anatômico ou fisiológico.

Na 1ª etapa os valores aumentaram tanto na técnica BS como na PZ, mantendo-se elevados até 30 minutos após a realização das técnicas.

Resultados semelhantes foram encontrados por Unoki et al., (2004), em modelo animal submetido à compressão torácica e aspiração endotraqueal, observando-se aumento na pressão parcial de gás carbônico (PaCO₂).

Nos nossos pacientes o aumento foi leve (36-39), permanecendo dentro dos limites da normalidade, porém essa elevação poderia refletir pequenas áreas de colapso, uma vez que não houve aumento do espaço morto anatômico.

Na 2ª etapa ocorreu diminuição dos valores imediatamente após a realização das técnicas ASP e PZ, retornando aos valores de base no minuto subsequente.

Ao estudar pacientes intubados, os mesmos autores não observaram variação na PaCO₂ após a compressão torácica associada à aspiração ou na aspiração endotraqueal isolada (Unoki et al., 2005).

5.4 Mecânica respiratória

5.4.1 Pico de pressão inspiratória e pressão platô

As pressões geradas pelas técnicas propostas merecem destaque especial por terem correlação direta com a mecânica respiratória de cada paciente, sendo importante monitorizá-las sempre que possível. O II

Consenso Brasileiro de Ventilação Mecânica (2000) preconiza os valores de PPI<50 cmH₂O e PPLATÔ<35 cmH₂O como limites máximos seguros, capazes de minimizar o risco de lesão (barotrauma) (David et al., 2000).

Na literatura não nos foi possível encontrar estudos que tenham utilizado PPI e PPLATÔ como objetos de investigação na aplicação da hiperinflação manual ou mesmo da técnica *bag-squeezing*.

Nas duas etapas de nosso estudo não encontramos variações significantes nos valores de PPI e PPLATÔ quando avaliados nos momentos pré-intervenção e até 30 (1ª etapa) e 120 minutos (2ª etapa), após a intervenção. Porém, durante a realização de cada manobra de BS o PPI aumentou acentuadamente, atingindo valores muito acima dos recomendados pelo II Consenso Brasileiro de Ventilação Mecânica (David et al., 2000).

As pressões geradas por meio da compressão de um ressuscitador manual podem variar em função do profissional que a realiza e mesmo entre ciclos realizados pelo mesmo operador.

A medida da PPI refere-se à pressão medida na extremidade proximal do tubo oro-traqueal. Fisiologicamente sabemos que esta pressão se dissipa ao longo da árvore traqueobrônquica em direção aos alvéolos, gerando pressões mais baixas do que a pressão de boca (Schumacker e Leff, 1996); esta pressão dissipada tem sua expressão no valor aproximado da PPLATÔ. Durante o estudo, a PPLATÔ não mostrou variação em função do tempo, permanecendo abaixo do limite considerado seguro.

A PPI ultrapassou os valores limites de segurança recomendados, porém os pacientes não apresentaram evidências clínicas de lesão do sistema respiratório, acreditamos não encontrar nenhum caso de barotrauma nem em nosso estudo nem na literatura devido a essas pressões se dispersarem nas grandes vias aéreas, porém segundo Branson (2007), altos picos de pressão não são isentos de riscos devido aos efeitos hemodinâmicos adversos e lesões pulmonares por barotrauma ou volutrauma, que podem provocar.

Na análise da PPLATÔ os valores encontrados nas duas técnicas durante as duas etapas permaneceram dentro dos limites de segurança, porém na primeira etapa os valores foram significantemente menores no grupo BS, enquanto que na segunda etapa os valores se igualaram. Acreditamos que este fato ocorreu por ser a técnica BS operador dependente, na qual as compressões numa bolsa auto-inflável ocorrem manualmente. Na técnica PZ uma vez ajustados os parâmetros de pressurização eles permanecem inalterados por 5 ciclos seqüenciais, havendo assim um maior controle dos valores de PPI e PPLATÔ.

Observamos diferenças também entre os valores encontrados nas duas etapas na técnica PZ. Entendemos que esta diferença se deve ao fato de na 1ª etapa estabelecermos valores pré-determinados de VC para ventilar nossos pacientes, enquanto que na 2ª etapa utilizamos os parâmetros previamente ajustados no ventilador mecânico, que, em geral, foram mais elevados do que os da 1ª etapa. Isso ocorre também pelo uso

da PEEP, capaz de manter as vias aéreas mais pressurizadas durante a atividade "pendular" de acomodação dos gases.

Nossos dados mostram que a técnica PEEP-ZEEP, padronizada com níveis de PEEP em 15 cmH₂O por 5 ciclos ventilatórios, não trouxe alterações importantes na hemodinâmica e na oxigenação, por tratar-se de um período de pressurização de aproximadamente 25 segundos. Embora a pressurização com 15 cmH₂O por um período de tempo de 15 min. possa alterar o índice cardíaco em pacientes no pós-operatório de cirurgia cardíaca (Auler Jr et al., 2000), a preconização de 5 ciclos não é suficiente para impor variações hemodinâmicas.

5.4.2 Complacência estática

A complacência estática (Cst) é um importante parâmetro de avaliação evolutiva da função pulmonar (Carvalho, 2000). Sua variação pode estar associada ao colapso de estruturas alveolares ou de vias aéreas, à presença de secreções, à interposição de líquido no interstício ou em unidades alveolares e à alterações estruturais do parênquima pulmonar ou da caixa torácica, como a esternotomia.

Hodgson et al (2000) mostraram aumento em 30% da complacência estática em pacientes com lesão pulmonar prévia após o uso de hiperinflação manual. Os autores sugerem que este aumento pode estar associado à retirada de maior quantidade de secreções e a resoluções de possíveis atelectasias.

Jones et al. (1992), em estudo com pacientes de doenças heterogêneas, observaram aumento da Cst após a aplicação do "bagging". Nos pacientes com doença pulmonar, esses valores mantiveram-se por 75 minutos, enquanto que nos pacientes sem doença pulmonar o aumento significante permaneceu por, pelo menos, 2 horas.

Em nossos dados a Cst não se alterou, independente da técnica aplicada. Os valores médios encontrados são os esperados em situações de entubação e ventilação mecânica. Isto porque, provavelmente, nossos pacientes não apresentassem doença pulmonar ou não tivessem alterações significantes das propriedades elásticas do parênquima pulmonar devido à resposta inflamatória posterior à CEC. A hipersecreção, caracterizada em nossos pacientes da 2ª etapa, não foi suficiente para formar tampões mucosos que causassem colapso pulmonar.

5.4.3 Resistência de via aérea inspiratória e expiratória

A Rva relaciona-se diretamente com a pressão e inversamente com o fluxo de ar nas vias respiratórias.

Nossos dados mostram aumentos de Rinsp imediatamente após a realização das técnicas, voltando aos seus valores basais dentro dos primeiros 10 minutos. A aspiração traqueal é a via comum das técnicas de BS e PZ. Uma resposta broncoconstritora transitória induzida pela sonda de aspiração foi descrita, primeiramente em gatos (Tomori e Widdicombe, 1969), depois em humanos (Dohi e Gold, 1979) e, recentemente, em pacientes cirúrgicos em UTI (Guglielminotti et al., 1998). Este efeito ocorre

durante os 30 segundos iniciais permanecendo por até 1 minuto após a aspiração.

Os autores sugerem que a introdução da sonda de aspiração estimula mecanorreceptores traqueais que se contraem para evitar lesões endobrônquicas.

E possível que este efeito tenha ocorrido em nossos pacientes, pois os valores de Rva variaram, porém de forma não expressiva. No entanto, quando os pacientes foram submetidos apenas à aspiração traqueal os valores de Rva não se modificaram, o que contradiz a hipótese de broncoconstrição. Como não houve variação de PPI e PFI, podemos pensar que os aumentos na Rva foram mínimos não trazendo relevância, mesmo porque em condições de entubação são esperados valores de resistência de até 10 cmH₂O/I/s. É possível que com valores tão aproximados haja variação dos parâmetros aferidos pelo pneumotacógrafo no momento da leitura.

Em alguns momentos observamos diminuição da Cst concomitantemente ao aumento da Rva e ETCO₂. Estes achados podem de alguma forma sinalizar áreas de colapso provocadas pela manobras. Atribuímos a não significância clínica e estatística destas alterações ao fato de que os pacientes tinham pulmões saudáveis ou sem grandes alterações, mesmo no grupo dos hipersecretivos. Talvez em estudo de pacientes com doenças endobrônquicas as alterações possam ser mais expressivas.

5.4.4 Fluxo inspiratório e expiratório

O PFI relaciona-se diretamente com a PPI gerada e inversamente com a Rva, por isso torna-se importante sua monitorização. É de particular interesse o estudo dos fluxos gerados pelas técnicas, pois a variação de fluxo contribuirá para o deslocamento do muco brônquico.

Na técnica PZ o fluxo inspiratório se mantém inalterado e ocorre elevação significante do fluxo expiratório no momento da redução da PEEP para zero (ZEEP). Este efeito ocorre, sobretudo, pela súbita despressurização da via aérea associada à compressão torácica manual, o que gera aumento do volume corrente exalado em um menor tempo expiratório, contrapondo-se à afirmação de Kaneko et al. (1999), sobre o prolongamento do fluxo expiratório.

É possível pensar que uma das vantagens desta técnica seja a mimetização da tosse, com a saída rápida de ar dos pulmões sem a desconexão do ventilador como o que ocorre na manobra *bag-squeezing* e o controle do pico de pressão inspiratória. Na manobra *bag-squeezing*, o pico de pressão inspiratória depende do tamanho da bolsa inflável utilizada e da habilidade do operador, o que pode levar à variações significativas, podendo gerar riscos (King e Morrell,1992, Mc Carren e Chow, 1996).

Durante a manobra *bag-squeezing* são geradas altas taxas de fluxo inspiratório, o que pode causar fluxos turbulentos que contribuíram, em grande parte, para o aumento da PPI. Os fluxos inspiratórios variaram somente na manobra BS, sendo diferentes das taxas de fluxo da PZ. Na técnica BS cada ciclo dependente da pressão manual exercida no

ressuscitador pelo profissional, com variações que atingiram valores de até 67 l/min. No entanto, na PEEP-ZEEP essa variação não ocorre porque os parâmetros ventilatórios permanecem os mesmos.

As taxas de PFE aumentaram consideravelmente na realização das manobras BS e PZ. Na 1ª etapa do estudo, na BS os fluxos expiratórios foram sempre altos (87 l/min.) a cada ciclo, enquanto que na PZ houve aumento significativo no momento da despressurização (64 l/min.). Este resultado indica que a técnica PZ promove fluxo expiratório elevado, porém este valor foi inferior ao de BS. Essa diferença se deve ao maior pico de pressão e fluxo presente na técnica BS.

A compressão da região torácica foi realizada em ambas as técnicas. Recentemente, estudo do nosso grupo, não evidenciou diferenças significantes nas variáveis de fluxos entre dois grupos de pacientes no pósoperatório imediato de procedimento operatório valvar, submetidos às técnicas de HM e BS. É possível sugerir que, em pacientes sedados e curarizados, a pressão exercida no tórax inferior não adiciona incremento no fluxo expiratório. A curarização e o edema da parede torácica causados pelo procedimento cirúrgico podem contribuir para redução da mobilidade torácica, dificultando a conversão da força extrínseca em aumento do fluxo (Herbst-Rodrigues et al., 2006). Esta suposição torna-se mais evidente quando indivíduos saudáveis submetidos à manobra de compressão torácica manual foram capazes de aumentar o fluxo expiratório. (Herbst-Rodrigues et al., 2005).

Na 2ª etapa o PFE atingiu valores de 69 l/min. nas manobras BS e 64 l/min. na PZ. Neste momento os pacientes não recebiam bloqueador muscular e encontravam-se em dias de pós-operatório tardio, tempo suficiente para a recuperação da mobilidade torácica.

Os trabalhos revisados não monitorizam o fluxo expiratório, porém citam que, seu aumento quando do uso de HM, pode promover melhor eficácia na remoção de muco das vias aéreas (Berney et al., 2004; Hodgson et al., 2000).

A relação PFI/PFE é um índice relacionado à efetividade da técnica em aumentar o fluxo expiratório objetivando a remoção de secreções (Kim et al., 1985). Esse valor deve ser menor que 0,9 para que se tenha um fluxo expiratório 10% maior que o fluxo inspiratório. Nossos dados mostram índices maiores em BS, de 1,99 e 1,46. Apesar da técnica ter sido realizada por um mesmo operador, altamente treinado e capaz de produzir valores semelhantes de volume corrente entre os ciclos da manobra com tempos expiratórios curtos, não foi suficiente para promover uma relação PFI/PFE <0,9. Na técnica PZ como o fluxo inspiratório foi menor e controlado pelo ventilador mecânico, a relação entre os fluxos tornou-se mais próxima daquela considerada ideal para o deslocamento do muco, 0,32 e 0,67. Não sabemos, porém, quão menor essa relação deva ser para torná-la eficaz, uma vez que em ambas as técnicas verificamos remoção de quantidades semelhantes de muco brônquico.

5.5 Secreção brônquica

Com os pacientes hipersecretivos realizava-se aspiração inicial no tempo denominado T0. O tempo médio entre o último atendimento fisioterapêutico e o T0 foi de 361 minutos (165-525) ou 6h01min. Analisando o peso úmido este foi significantemente maior no tempo 0, o que nos mostra o efeito do tempo no maior acúmulo de secreção, uma vez que entre as técnicas o intervalo foi de 2 horas. Observamos o efeito acumulativo das técnicas a partir da 4ª hora subseqüente, o que nos mostra que em pacientes hipersecretivos a padronização de um intervalo de 2 horas entre as técnicas passa a ser desnecessário a partir da 2ª intervenção, necessitando avaliação quanto à necessidade de uma nova intervenção pelo fisioterapeuta.

Apesar da técnica PZ ter removido menor quantidade de muco, quando comparada as demais, julgamos pertinente considerá-la em situações especiais, pois esta técnica tem características peculiares em relação às demais, principalmente pela manutenção da conexão paciente/ventilador, bem como, o controle preciso das variáveis de fluxos e pressões impostas ao sistema respiratório durante a execução da técnica.

A análise da transportabilidade por meio da máquina simuladora da tosse é empregada para verificar se alterações das propriedades viscoelásticas do muco prejudicam seu deslocamento por meio da interação ar-líquido (King et al, 1985; Macchione et al., 1995; Zahm et al., 1989). Em indivíduos saudáveis, as vias aéreas apresentam uma

camada fina de muco que é deslocada pelo transporte muco ciliar e não pelo fluxo de ar, mesmo na tosse voluntária. Em situações de hipersecreção brônquica, no entanto, as interações do fluxo de ar com o muco tornam-se fundamentais para seu deslocamento. A eficiência desse mecanismo pode variar de acordo com fatores como fluxo de ar, espessura da camada de muco e relação viscosidade/elasticidade. Por outro lado, a elasticidade e a impedância total do muco se correlaciona de forma negativa com a eficiência da tosse, pois a elasticidade impede a formação de onda na camada do muco, o que desfavorece a energia do fluxo de ar para seu efetivo deslocamento.

O deslocamento do muco pela máquina simuladora da tosse no tempo 0 foi significantemente maior do que os coletados durante as técnicas. Isto significa que esse muco inicial poderia ser facilmente removido pela tosse, depositando-se na cânula endotraqueal ou em vias aéreas proximais. O muco retirado após a aplicação das técnicas apresentou um pior deslocamento, o que pode sugerir um muco dependente mais do mecanismo de clearence muco ciliar para ser transportado, porém como este mecanismo esta prejudicado em pacientes ventilados mecanicamente, conforme demonstrado por Branson (2007), a aplicação de uma técnica codjuvante para remoção do muco faz-se necessária. A técnica PZ quando comparada à aspiração foi capaz de deslocar um muco menos transportável pela tosse, confirmando que o aumento do fluxo expiratório provocado pela manobra foi eficiente.

O ângulo de contato fornece uma medida da tensão superficial do muco, que se correlaciona com o trabalho de aderência entre o muco e a superfície onde está depositado, o epitélio. (Macchione et al., 1995; Puchelle et al., 1987). Girod et al., (1992), concluíram que um a ângulo de contato de aproximadamente 20 graus representa uma ótima condição de muco eficiente e protetor. Um ângulo menor caracteriza um muco menos aderente.

Nossos resultados na análise da adesividade do muco tiveram forte relação com os previamente analisamos pela máquina simuladora da tosse, mostrando que o muco retirado no tempo 0 possui menor adesividade e de maior transportabilidade. O muco retirado durante as manobras mostrou maior adesividade ficando sujeito a estagnação na árvore brônquica.

Em nosso estudo utilizamos o epitélio do palato de rã para a avaliação do transporte mucociliar, pois possui características semelhantes ao epitélio da via aérea dos mamíferos e tem sido modelo em diversas condições (Lorenzi et al. 1992; Macchione et al. 1995; Saldiva et al. 1992). A análise mostrou que o muco retirado pela técnica de BS teve um pior desempenho que aqueles retirados no tempo 0 do estudo. Pode-se supor que este muco teria maior dificuldade de remoção por meio da tosse e do *clearence;* esta talvez seja a situação na qual a aplicação de técnicas específicas seja um diferencial.

Finalmente, nossos dados, obtidos em pacientes no período pós-operatório de doenças cardiovasculares, sugerem que as técnicas de remoção de secreção brônquica pouco alteram o sistema cardiovascular, sendo, portanto, seguras.

Desde que previamente hiperoxigenados e, respeitando-se o tempo mínimo entre os procedimentos de aspiração, as técnicas não provocam dessaturação.

As variações ocorridas na ventilação e na mecânica respiratória apresentaram pequena relevância.

A nova técnica proposta, PEEP-ZEEP, pode ser uma alternativa à técnica de *bag-squeezing*, pois atinge valores de fluxo expiratório capazes de deslocar secreções, mesmo aquelas com maior adesividade, e não impõe ao sistema respiratório taxas elevadas de pressão e fluxo.

Neste estudo vimos que pacientes em pós-operatório de cirurgia cardíaca podem permanecer mais de 2 horas sem serem submetidos a procedimentos fisioterapêuticos rotineiros de remoção de secreção. A técnica de escolha do fisioterapeuta deverá ser considerada dentro de critérios como uso de recursos físicos e humanos e tempo dispendido, pois não observamos diferenças quanto a efetividade das técnicas estudadas.

A Fisioterapia Respiratória necessita de indicadores de intensidade de assistência, para melhor adequação de sua intervenção.

A utilização do ventilador mecânico como recurso terapêutico para remoção de secreções brônquicas mostrou-se viável, pois pode potencializar o deslocamento de secreções com maior monitorização do sistema cardiorrespiratório.

A técnica PEEP-ZEEP é uma proposta terapêutica que pode ser implementada na prática assistencial, sendo no mínimo tão benéfica quanto as demais, porém, mais estudos serão necessários para evidenciar seu valor clínico, especialmente em populações de pacientes com secreções brônquicas de características diferentes às estudadas nesta amostra.

6. Conclusões

Conclusões 89

Nosso estudo possibilitou as seguintes conclusões:

 As técnicas quando aplicadas em pacientes em pósoperatório de cirurgia cardiovascular imediato e tardio não alteraram significantemente o comportamento hemodinâmico, de troca gasosa e de mecânica respiratória.

A nova proposta de PEEP-ZEEP permite maior controle das variáveis de mecânica respiratória, possibilitando monitoramento das pressões e fluxos impostos ao sistema contribuindo para aumentar a segurança.

2) Todas as técnicas foram capazes de remover secreções brônquicas, porém o intervalo de 2 horas mostrou-se insuficiente para produção de secreção com característica de fácil remoção ou quantidade capaz de alterações significativas.

É possível que a técnica PEEP-ZEEP por provocar relações de fluxos mais efetivos consiga remover um muco de difícil deslocamento pela tosse.

7. Anexos

Anexo I

7. Anexo 7.1 – Anexo I 7.1.1 – Termos de aprovação

DIRETORIA CLÍNICA

Comissão de Ética para Análise de Projetos de Pesquisa

APROVAÇÃO

A Comissão de Ética para Análise de Projetos de Pesquisa - CAPPesq da Diretoria Clínica do Hospital das Clínicas e da Faculdade de Medicina da Universidade de São Paulo, em sessão de 29.04.04, APROVOU o Protocolo de Pesquisa nº 266/04, intitulado: "Estudo do comportamento hemodinâmico, da troca gasosa, da mecânica respiratória e da análise do muco brônquico na aplicação de técnicas de remoção de secreção brônquica em pacientes sob ventilação mecânica" apresentado pela COMISSÃO CIENTÍFICA E DE ÉTICA DO INSTITUTO DO CORAÇÃO, inclusive o Termo de Consentimento Livre e Esclarecido fase A e o Termo de Consentimento Livre e Esclarecido fase B.

Pesquisador(a) Responsável: Dra. Maria Ignêz Zanetti Feltrim
Pesquisador(a) Executante: Sr. Marcus Vinicius Herbst Rodrigues

CAPPesq, 29 de Abril de 2004.

PROF. DR. EUCLIDES AYRES DE CASTILHO Presidente da Comissão de Ética para Análise de Projetos de Pesquisa

OBSERVAÇÃO: Cabe ao pesquisador elaborar e apresentar à CAPPesq, os relatórios parciais e final sobre a pesquisa (Resolução do Conselho Nacional de Saúde nº 196, de 10.10.1996, inciso IX.2, letra "c")

INSTITUTO DO CORAÇÃO

(Fundação E. J. Zerbini) Hospital das Clínicas Faculdade de Medicina da Universidade de São Paulo

Mem.CC.1346

São Paulo, 4 de dezembro de 2003.

À Dra. Maria Ignez Feltrin

A Comissão Científica e de Ética do Instituto do Coração, apreciou na sessão 441/03/20 de 4.12.2003, Protocolo de Pesquisa SDC 2361/03/155 "Estudo do comportamento hemodinâmico, da troca gasosa, da mecânica respiratória e da análise do muco brônquico na aplicação de técnicas de remoção de secreção brônquica em pacientes sob ventilação mecânica", e foi o seguinte o parecer: "Aprovado no mérito científico, sem ônus para a Instituição".

Atenciosamente,

Selma Cristina Quaia Secretária da Comissão Científica e de Ética InCor/HC/FMUSP

Av. Dr. Enéas de Carvalho Aguiar, 44 - CEP: 05403-900 - São Paulo - SP - Brasil - Fone (011) 3069-5000

7.1.2 – Termo de consentimento: 1ª etapa

Anexo D

HOSPITAL DAS CLÍNICAS

DA

FACULDADE DE MEDICINA DA UNIVERSIDADE DE SÃO PAULO

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

(Instruções para preenchimento no verso)
I - DADOS DE IDENTIFICAÇÃO DO SUJEITO DA PESQUISA OU RESPONSÁVEL LEGAL
1. NOME DO PACIENTE:: DOCUMENTO DE IDENTIDADE Nº :
2.RESPONSÁVEL LEGAL NATUREZA (grau de parentesco, tutor, curador etc.) DOCUMENTO DE IDENTIDADE :SEXO: M F DATA NASCIMENTO.:/ ENDEREÇO:
II - DADOS SOBRE A PESQUISA CIENTÍFICA 1. TÍTULO DO PROTOCOLO DE PESQUISA: ESTUDO DO COMPORTAMENTO HEMODINÂMICO, DA TROCA GASOSA, DA MECÂNICA RESPIRATÓRIA E DA ANÁISE DO MUCO BRÔNQUICO NA APLICAÇÃO DE TÉCNICAS DE REMOÇÃO DE SECREÇÃO BRÔNQUICA EM PACIENTES SOB VENTILAÇÃO MECÂNICA -FASE A
2.PESQUISADOR: MARCUS VINICIUS HERBST RODRIGUES
CARGO/FUNÇÃO: FISIOTERAPEUTA
INSCRIÇÃO CONSELHO REGIONAL CREFITO/3 Nº 14.490-F
UNIDADE DO HCFMUSP: SERVIÇO DE FISIOTERAPIA INCOR.
3. AVALIAÇÃO DO RISCO DA PESQUISA:
SEM RISCO \square RISCO MÍNIMO $^{{\Bbb Z}}$ RISCO MÉDIO \square
RISCO BAIXO RISCO MAIOR (probabilidade de que o indivíduo sofra algum dano como consequência imediata ou tardia do estudo)
4.DURAÇÃO DA PESQUISA : 2 ANOS

III - REGISTRO DAS EXPLICAÇÕES DO PESQUISADOR AO PACIENTE OU SEU REPRESENTANTE LEGAL SOBRE A PESQUISA, CONSIGNANDO:

justificativa e os objetivos da pesquisa;
 procedimentos que serão utilizados e propósitos, incluindo a identificação dos procedimentos que são experimentais;
 desconfortos e riscos esperados;
 benefícios que poderão ser obtidos;
 procedimentos alternativos que possam ser vantajosos para o indivíduo.

Para realização da cirurgia cardíaca é necessário que você seja anestesiado, intubado e respire com ajuda de aparelhos. Pela intubação e anestesia você ficará impossibilitado de tossir e remover secreções pulmonares. Com isso, fazse necessário a realização, por nós fisioterapeutas, de técnicas de limpeza pulmonar. O objetivo do nosso estudo é comparar três dessas técnicas, com o objetivo de avaliar qual delas tem a melhor eficiência em remover as secreções pulmonares. Para cada paciente será escolhida apenas uma técnica por meio de sorteio. Durante a aplicação da técnica escolhida você ainda estará sob efeito da anestesia e, portanto, não sentirá nenhum desconforto. A técnica de fisioterapia será aplicada meia hora após sua chegada na UTI, sendo necessária uma avaliação da função pulmonar antes do procedimento, nos 10 primeiros minutos e 30 minutos após o procedimento. Estaremos à sua disposição esclarecer qualquer dúvida a sobre este estudo, e você poderá cancelar este consentimento a qualquer momento sem qualquer prejuízo ao seu tratamento.

IV - ESCLARECIMENTOS DADOS PELO PESQUISADOR SOBRE GARANTIAS DO SUJEITO DA PESQUISA:

- 1. acesso, a qualquer tempo, às informações sobre procedimentos, riscos e benefícios relacionados à pesquisa, inclusive para dirimir eventuais dúvidas.
- 2. liberdade de retirar seu consentimento a qualquer momento e de deixar de participar do estudo, sem que isto traga prejuízo à continuidade da assistência.
- 3. salvaguarda da confidencialidade, sigilo e privacidade.
- **4**. disponibilidade de assistência no HCFMUSP, por eventuais danos à saúde, decorrentes da pesquisa.
- 5. viabilidade de indenização por eventuais danos à saúde decorrentes da pesquisa.

V. INFORMAÇÕES DE NOMES, ENDEREÇOS E TELEFONES DOS RESPONSÁVEIS PELO ACOMPANHAMENTO DA PESQUISA, PARA CONTATO EM CASO DE INTERCORRÊNCIAS CLÍNICAS E REAÇÕES ADVERSAS.

		DRIGUES - AV DR E 000 / FONE 3069-531	
	I. OBSER	RVAÇÕES COMPLE	V MENTARES: V
	ós convenienteme	ENTIMENTO PÓS-ES nte esclarecido pelo ar do presente Protoc	pesquisador e ter entendido o que me
São Paulo,	de	de 200	
assinatura do sujei	ito da pesquisa ou re	esponsável legal	ssinatura do pesquisador (carimbo ou nome Legível)

7.1.3 – Termo de consentimento: 2ª etapa

Anexo D

HOSPITAL DAS CLÍNICAS

DA

FACULDADE DE MEDICINA DA UNIVERSIDADE DE SÃO PAULO

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

(Instruções para preenchimento no verso)
I - DADOS DE IDENTIFICAÇÃO DO SUJEITO DA PESQUISA OU RESPONSÁVEL LEGAL
1. NOME DO PACIENTE:
2.RESPONSÁVEL LEGAL NATUREZA (grau de parentesco, tutor, curador etc.) DOCUMENTO DE IDENTIDADE :SEXO: M □ F □ DATA NASCIMENTO.:/ ENDEREÇO:
II - DADOS SOBRE A PESQUISA CIENTÍFICA 2. TÍTULO DO PROTOCOLO DE PESQUISA: ESTUDO DO COMPORTAMENTO HEMODINÂMICO, DA TROCA GASOSA, DA MECÂNICA RESPIRATÓRIA E DA ANÁISE DO MUCO BRÔNQUICO NA APLICAÇÃO DE TÉCNICAS DE REMOÇÃO DE SECREÇÃO BRÔNQUICA EM PACIENTES SOB VENTILAÇÃO MECÂNICA -FASE A
2.PESQUISADOR: MARCUS VINICIUS HERBST RODRIGUES
CARGO/FUNÇÃO: FISIOTERAPEUTA
INSCRIÇÃO CONSELHO REGIONAL CREFITO/3 Nº 14.490-F
UNIDADE DO HCFMUSP: SERVIÇO DE FISIOTERAPIA INCOR.
3. AVALIAÇÃO DO RISCO DA PESQUISA:
SEM RISCO RISCO MÍNIMO X RISCO MÉDIO
RISCO BAIXO RISCO MAIOR
(probabilidade de que o indivíduo sofra algum dano como consequência imediata ou tardia do estudo)
4.DURAÇÃO DA PESQUISA : 2 ANOS

III - REGISTRO DAS EXPLICAÇÕES DO PESQUISADOR AO PACIENTE OU SEU REPRESENTANTE LEGAL SOBRE A PESQUISA, CONSIGNANDO:

justificativa e os objetivos da pesquisa;
 procedimentos que serão utilizados e propósitos, incluindo a identificação dos procedimentos que são experimentais;
 desconfortos e riscos esperados;
 benefícios que poderão ser obtidos;
 procedimentos alternativos que possam ser vantajosos para o indivíduo.

Em algumas situações é necessário respirar com o auxílio de aparelhos, quando isto ocorre você ficará impossibilitado de tossir e remover secreções pulmonares. Com isso, faz-se necessário a realização, por nós fisioterapeutas, de técnicas de limpeza pulmonar.

Uma das técnicas é realizada inflando ar em seus pulmões com auxílio de uma bolsa especial. Depois de 3 repetições a secreção é retirada por meio de uma sonda aspirativa. A outra técnica é realizada inflando ar em seus pulmões alterando os parâmetros do ventilador. Após 3 repetições a secreção é retirada por meio de uma sonda aspirativa.

O objetivo do nosso estudo é comparar duas dessas técnicas, com o objetivo de avaliar qual delas tem a melhor eficiência em remover as secreções pulmonares. Estaremos à sua disposição esclarecer qualquer dúvida a sobre este estudo, e você poderá cancelar este consentimento a qualquer momento sem qualquer prejuízo ao seu tratamento.

IV - ESCLARECIMENTOS DADOS PELO PESOLUSADOR SORRE GARANTIAS DO

IV - ESCLARECIMENTOS DADOS PELO PESQUISADOR SOBRE GARANTIAS DO SUJEITO DA PESQUISA:

- 1. acesso, a qualquer tempo, às informações sobre procedimentos, riscos e benefícios relacionados à pesquisa, inclusive para dirimir eventuais dúvidas.
- 2. liberdade de retirar seu consentimento a qualquer momento e de deixar de participar do estudo, sem que isto traga prejuízo à continuidade da assistência.
- 3. salvaguarda da confidencialidade, sigilo e privacidade.
- **4**. disponibilidade de assistência no HCFMUSP, por eventuais danos à saúde, decorrentes da pesquisa.
- 5. viabilidade de indenização por eventuais danos à saúde decorrentes da pesquisa.

 V. INFORMAÇÕES DE NOMES, ENDEREÇOS E TELEFONES DOS RESPONSÁVEIS PELO ACOMPANHAMENTO DA PESQUISA, PARA CONTATO EM CASO DE

INTERCORRÊNCIAS CLÍNICAS E REAÇÕES ADVERSAS.

MARCUS VINICIUS HERBST RODRIGUES - AV DR ENÉAS DE CARVALHO AGUIAR, 44
SÃO PAULO – SP CEP 05403-000 / FONE 3069-5319

			V
	I. OBSEF	RVAÇÕES COMPLE	MENTARES:
			V
	II - CONSE	ENTIMENTO PÓS-E	SCLARECIDO
		nte esclarecido pelo ar do presente Protoc	pesquisador e ter entendido o que me colo de Pesquisa
São Paulo,	de	de 200	
assinatura do suje	ito da pesquisa ou re	esponsável legal	ssinatura do pesquisador (carimbo ou nome Legível)

7.2 Anexo II – 1^a Etapa

TABELA A1: Valores individuais para os dados antropométricos e tempo de CEC: grupos ASPIRAÇÃO (ASP), *BAG-SQUEEZING*(BS) e PEEP-ZEEP (PZ).

	GRUPO ASPIRAÇÃO											
n	Sexo	CEC	Idade	Peso	Altura	IMC						
1	m	107	53	75	167	27						
2	f	70	67	61	154	26						
3	m	90	45	52	161	20						
4	m	83	69	77	167	28						
5	f	60	70	64	154	27						
6	m	117	55	69	167	25						
7	m	95	66	60	157	24						
8	f	80	66	89	167	32						
9	m	60	68	69	163	26						
10	m	105	39	83	167	30						
11	m	90	49	80	172	27						
12	m	98	52	85	170	29						
13	f	120	58	60	151	26						
14	f	88	62	65	165	24						
15	f	115	54	55	158	22						
	MD	92	58	70	163	26						
	DP	19,19	9,59	11,40	6,45	3,00						
M	ÁXIMO	120	70	89	172	32						
M	ÍNIMO	60	39	52	151	20						

GRUPO BAG SQUEEZING											
n	Sexo	CEC	Idade	Peso	Altura	IMC					
1	M	78	43	43		32					
2	m	100	55	79	167	28					
3	M	75	63	70	158	28					
4	M	94	67	77	167	28					
5	m	70	68	76	170	26					
6	m	72	67	64	165	24					
7	m	70	48	95	175	31					
8	f	100	72	67	160	26					
9	f	75	46	68	165	25					
10	m	75	38	74	166	27					
11	m	105	73	63	166	23					
12	m	120	62	57	157	23					
13	m	111	69	89	170	31					
14	m	100	61	73	165	27					
15	m	100	74	67	168	24					
	MD	90	60	75	167	27					
	DP	16,74	11,65	12,85	5,94	2,96					
M	ÁXIMO	120	74	105	180,00	32					
M	IÍNIMO	70	38	57	157,00	23					

	GRUPO PEEP-ZEEP											
n	Sexo	CEC	Idade	Peso	Altura	IMC						
1	m	95	53	92	178	29						
2	m	110	50	102	178	32						
3	m	80	56	68	160	27						
4	f	100	60	82	160	32						
5	m	55	64	71	172	24						
6	f	57	66	63	149	28						
7	m	100	49	72	166	26						
8	m	115	75	65	162	25						
9	m	110	54	73	169	26						
10	m	103	57	78	178	25						
11	f	45	68	43	160	17						
12	m	90	72	73	157	30						
13	m	85	68	76	173	25						
14	m	115	48	70	163	26						
15	f	110	62	57	165	21						
	MD	91	60	72	166	26						
	DP	22,81	8,57	13,81	8,58	3,97						
	ÁXIMO	115	75	102	178	32						
N	IÍNIMO	45	48	43	149	17						

TABELA A2 Valores individuais para as variáveis hemodinâmicas e de trocas gasosas grupos: ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP.

	GRUPO ASPIRAÇÃO													
		FC		PAM			SpO ₂				ETCO	2		
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.		
1	103	114	112	61	79	45	98	100	99	36	38	40		
2	110	109	101	94	63	66	99	98	97	27	26	26		
3	116	108	107	66	64	63	97	98	99	47	50	52		
4	116	111	115	89	69	68	100	99	99	49	51	47		
5	66	72	59	87	76	92	98	97	97	θ	θ	θ		
6	77	79	72	76	95	81	100	99	99	34	35	34		
7	117	118	126	84	84	89	99	99	99	36	39	40		
8	84	84	89	85	78	78	99	98	99	34	35	34		
9	88	89	88	80	90	90	99	97	99	31	31	32		
10	83	85	87	79	72	78	98	98	98	31	34	34		
11	75	72	74	90	92	95	98	97	97	45	46	46		
12	115	110	115	80	82	85	99	98	99	35	39	38		
13	91	99	95	103	93	95	98	97	97	27	29	29		
14	100	105	105	100	65	72	99	98	98	24	23	23		
15	82	112	105	110	100	105	98	97	97	38	39	38		
MD	95	98	97	86	80	80	99	98	98	35	37	37		
DP	17,20	16,02	18,52	13,09	12,05	15,47	0,83	0,93	0,94	7,51	8,29	8,12		
MAX	117	118	126	110	100	105	100	100	99	49	51	52		
MIN	66	72	59	61	63	45	97	97	97	24	23	23		

	GRUPO BAG SQUEEZING													
		FC		PAM			SpO ₂				ETCO ₂			
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min	30 min	Pré	10 min	30 min		
1	106	103	102	78	86	99	95	98	99	32	32	30		
2	93	100	100	90	93	90	100	97	98	50	54	56		
3	84	112	100	105	66	60	100	100	98	34	30	33		
4	105	110	110	76	75	74	96	93	96	35	37	39		
5	92	94	89	62	65	56	98	97	96	42	51	51		
6	104	110	105	93	90	89	97	97	97	38	40	40		
7	100	107	103	113	109	103	98	98	98	28	29	28		
8	104	106	110	79	84	64	99	100	99	33	32	30		
9	108	106	102	89	90	92	99	99	100	36	36	37		
10	95	92	91	85	90	90	98	99	99	40	43	44		
11	100	90	80	85	83	70	98	98	99	35	36	37		
12	98	104	103	86	84	80	99	99	100	49	46	48		
13	106	110	108	78	84	79	98	98	98	32	32	30		
14	105	112	113	85	85	88	96	95	95	33	36	35		
15	78	73	82	77	79	72	97	98	98	28	28	29		
MD	99	102	100	85	84	80	98	98	98	36	37	38		
DP	8,73	10,71	10,03	12,23	10,73	14,17	1,46	1,83	1,46	6,56	7,93	8,63		
MAX	108	112	113	113	109	103	100	100	100	50	54	56		
MIN	78	73	80	62	65	56	95	93	95	28	28	28		

	GRUPO PEEP-ZEEP												
		FC		PAM			SpO ₂				ETCO	2	
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.	
1	140	126	144	85	80	83	98	99	98	41	43	39	
2	73	73	72	83	82	84	99	100	100	32	31	33	
3	96	96	83	100	81	84	97	100	100	32	32	34	
4	84	73	70	78	80	83	96	96	96	30	29	27	
5	104	101	95	65	76	78	98	99	99	34	35	35	
6	116	115	107	66	64	58	96	95	96	25	27	26	
7	90	88	89	80	90	97	99	99	99	36	37	39	
8	91	89	89	81	71	63	95	95	96	46	48	49	
9	92	98	120	82	104	103	97	99	99	42	50	52	
10	118	120	120	75	73	73	98	98	99	44	46	45	
11	106	108	106	72	72	72	98	99	98	43	44	45	
12	91	93	89	100	100	95	98	99	99	34	33	31	
13	89	100	100	83	91	91	98	99	98	53	60	65	
14	105	98	101	63	82	125	97	98	99	36	43	50	
15	74	74	72	90	86	93	99	99	99	28	32	36	
MD	98	97	97	80	82	85	98	98	98	37	39	40	
DP	17,56	16,22	20,43	11,18	10,82	16,58	1,19	1,62	1,35	7,59	9,29	10,60	
MAX	140	126	144	100	104	125	99	100	100	53	60	65	
MIN	73	73	70	63	64	58	95	95	96	25	27	26	

TABELA A3 Valores individuais para as variáveis PPI, PPLATÔ, PFI e PFE grupos: ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP.

	GRUPO ASPIRAÇÃO													
		PPI		PPLATÔ				PFI			PFE			
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.		
1	19	20	19	16	17	16	31	32	33	31	28	35		
2	16	18	17	14	16	16	24	23	25	26	27	28		
3	19	17	17	15	14	15	15	14	15	28	29	29		
4	17	16	15	15	16	16	32	33	38	30	31	31		
5	29	21	19	28	19	17	18	18	17	56	45	35		
6	16	18	18	14	16	16	23	24	24	24	25	24		
7	15	15	14	13	14	14	17	17	20	31	36	32		
8	17	19	18	14	16	15	20	20	21	29	32	35		
9	14	13	15	13	15	13	18	16	16	41	46	45		
10	14	16	16	13	14	14	21	19	20	43	22	21		
11	19	19	19	16	16	16	27	27	28	44	43	43		
12	13	14	13	13	13	14	34	34	34	20	24	23		
13	17	16	16	15	14	14	23	24	30	44	41	38		
14	21	21	21	18	20	20	15	15	16	53	59	61		
15	17	18	18	17	16	16	17	16	17	44	46	45		
MD	18	17	17	16	16	15	22	22	24	36	36	35		
DP	3,85	2,41	2,17	3,76	1,91	1,68	6,21	6,75	7,44	10,87	10,62	10,42		
MAX	29	21	21	28	20	20	34	34	38	56	59	61		
MIN	13	13	13	13	13	13	15	14	15	20	22	21		

	GRUPO BAG SQUEEZING													
		PPI		PPLATÔ			PFI				PFE			
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.		
1	20	20	19	14	17	16	34	25	26	33	33	29		
2	16	16	15	14	14	13	22	21	22	39	41	42		
3	14	14	14	13	13	13	19	19	20	37	38	39		
4	17	16	17	13	15	14	18	19	19	28	27	30		
5	18	18	19	17	17	17	34	32	34	45	45	45		
6	15	15	15	14	14	14	18	17	17	27	26	28		
7	17	18	18	15	16	16	24	24	23	42	44	45		
8	21	21	20	18	17	17	16	16	15	45	46	47		
9	17	18	18	15	16	17	18	17	17	36	21	21		
10	15	15	16	12	14	14	20	18	18	33	44	40		
11	15	14	14	13	13	13	13	18	16	28	27	28		
12	16	17	16	15	15	15	18	16	17	41	42	44		
13	18	22	18	16	15	16	21	45	22	37	36	36		
14	15	16	17	14	14	15	26	25	24	42	45	51		
15	15	14	14	13	13	13	19	19	20	32	35	36		
MD	17	17	17	14	15	15	21	22	21	36	37	37		
DP	1,99	2,55	1,99	1,64	1,46	1,55	6,01	7,71	4,86	6,04	8,22	8,63		
MAX	21	22	20	18	17	17	34	45	34	45	46	51		
MIN	14	14	14	12	13	13	13	16	15	27	21	21		

					GRI	UPO PEE	P-ZEE	EP .				
		PPI			PPLAT	Ô		PFI			PFE	
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.
1	15	15	18	14	14	16	21	23	25	35	38	45
2	25	23	23	20	20	19	28	28	27	58	58	58
3	14	16	15	14	15	15	28	29	29	31	31	34
4	19	19	20	17	17	18	26	21	19	49	49	50
5	13	15	15	12	14	13	17	18	18	30	31	31
6	18	19	18	16	17	16	15	15	15	46	50	49
7	16	16	17	14	14	15	21	23	22	31	34	34
8	16	16	16	15	14	14	17	15	16	31	32	31
9	15	17	17	12	14	15	14	15	14	27	28	33
10	22	17	17	21	15	15	23	26	27	57	46	46
11	13	14	14	12	12	13	12	12	12	26	26	25
12	19	21	22	18	19	19	24	23	24	48	50	55
13	13	12	13	12	13	12	20	24	21	31	27	27
14	15	16	13	13	14	13	23	24	23	28	34	32
15	14	15	15	13	14	14	15	16	16	39	42	44
MD	16	17	17	15	15	15	20	21	21	38	38	40
DP	3,52	2,79	3,00	2,95	2,22	2,17	5,12	5,28	5,29	10,96	10,06	10,51
MAX	25	23	23	21	20	19	28	29	29	58	58	58
MIN	13	12	13	12	12	12	12	12	12	26	26	25

TABELA A4 Valores individuais para as variáveis Cst, Rinsp e Rexp grupos: ASPIRAÇÃO, *BAG-SQUEEZING* e PEEP-ZEEP.

			G	RUPO	ASPIRA	ÇÃO			
		Rinsp)		Rexp			Cst	
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.
1	6	8	5	8	10	12	41	35	34
2	12	13	12	13	15	12	33	28	30
3	19	18	15	17	14	11	32	31	34
4	6	5	5	10	8	7	40	51	50
5	12	10	9	11	9	10	35	30	41
6	10	14	12	13	13	15	33	26	27
7	6	6	6	6	5	5	50	53	53
8	8	9	8	7	8	11	49	42	42
9	6	6	6	5	6	6	45	43	45
10	6	17	15	6	20	16	49	45	46
11	7	6	7	8	7	7	48	48	47
12	5	5	7	10	10	10	58	61	66
13	7	6	6	7	6	7	46	47	44
14	8	8	8	8	8	9	28	25	24
15	7	8	8	7	8	8	42	38	47
MD	8	9	9	9	10	10	42	40	42
DP	3,66	4,28	3,36	3,28	4,07	3,20	8,41	10,88	10,90
MAX	19	18	15	17	20	16	58	61	66
MIN	5	5	5	5	5	5	28	25	24

			GRU	JPO B	AG SQUI	EEZING			
		Rinsp)		Rexp			Cst	
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.
1	10	8	7	11	11	11	55	44	46
2	6	5	3	7	6	4	56	54	59
3	5	5	3	6	6	6	59	55	55
4	6	6	6	8	12	9	50	45	46
5	5	5	4	6	6	6	40	42	39
6	6	7	6	7	6	7	46	45	47
7	7	7	7	8	7	8	59	53	51
8	11	13	11	12	11	9	30	32	33
9	7	6	6	9	5	6	42	39	39
10	6	7	6	6	6	5	58	47	45
11	6	6	5	5	6	6	53	50	50
12	7	6	6	8	7	7	34	36	37
13	7	9	7	9	8	7	43	48	46
14	7	6	6	7	6	6	54	52	48
15	8	6	6	7	7	6	44	47	47
MD	7	7	6	8	7	7	48	46	46
DP	1,67	2,04	1,91	1,91	2,19	1,77	9,20	6,65	6,79
MAX	11	13	11	12	12	11	59	55	59
MIN	5	5	3	5	5	4	30	32	33

			(RUP) PEEP-2	ZEEP			
		Rinsp)		Rexp			Cst	
n	Pré	10 min.	30 min.	Pré	10 min.	30 min.	Pré	10 min.	30 min.
1	6	5	6	6	6	6	72	78	68
2	10	9	9	10	8	10	38	40	39
3	7	8	7	10	11	10	42	39	36
4	7	7	7	9	8	7	34	39	37
5	5	5	5	6	7	6	58	57	59
6	10	13	12	10	8	10	36	35	33
7	6	7	7	5	6	6	48	49	47
8	9	11	8	6	8	8	44	41	40
9	12	18	14	7	10	10	51	39	38
10	9	6	6	8	6	7	32	50	52
11	10	11	9	8	9	8	40	39	33
12	8	9	7	8	9	8	39	36	33
13	5	5	4	4	3	3	63	71	66
14	10	7	8	10	7	8	51	45	46
15	6	7	7	7	7	6	45	37	38
MD	8	9	8	8	8	8	46	46	44
DP	2,17	3,54	2,55	1,96	1,92	2,00	11,25	12,97	11,80
MAX	12	18	14	10	11	10	72	78	68
MIN	5	5	4	4	3	3	32	35	33

TABELA A5 Valores individuais de FC registradas nos tempos pré-intervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP).

				(GRUPC	BAG	SQUE	EZIN	3				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	98	108	111	109	108	106	106	104	105	104	104	104	103
2	94	107	110	111	110	100	109	106	110	109	110	112	100
3	95	104	96	95	95	94	95	94	93	99	99	92	91
4	92	119	120	118	116	116	117	116	116	117	117	110	89
5	100	99	99	100	100	101	103	102	103	104	105	107	103
6	108	111	116	114	114	110	109	108	117	107	106	106	102
7	100	116	115	109	107	106	107	105	105	100	97	90	80
8	100	114	110	109	106	104	105	105	106	102	102	106	103
9	106	106	99	101	101	101	101	103	102	103	106	103	102
10	78	77	78	76	75	74	73	75	76	71	72	73	82
11	93	100	99	102	102	102	102	101	101	101	101	100	100
12	92	96	95	95	95	94	93	93	93	93	93	94	89
13	106	112	103	103	119	113	112	111	110	107	114	110	108
14	105	109	109	108	108	108	108	108	108	108	109	110	110
15	105	111	109	113	113	106	109	113	109	103	113	112	113
MD	98	106	105	104	105	102	103	103	104	102	103	102	98
DP	7,84	10,22	10,64	10,32	10,88	9,95	10,37	9,90	10,25	10,09	10,83	10,71	9,90
MAX	108	119	120	118	119	116	117	116	117	117	117	112	113
MIN	78	77	78	76	75	74	73	75	76	71	72	73	80

					GR	UPO P	EEP-ZI	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	140	125	129	132	129	130	131	130	129	129	127	126	144
2	84	77	79	76	75	75	78	73	73	73	72	73	70
3	96	-	-	-	-	-	-	-	-	-	-	96	83
4	104	102	105	104	103	103	103	101	101	101	101	101	95
5	106	107	108	108	108	108	107	108	107	107	107	108	106
6	116	117	118	117	115	115	115	115	120	121	118	115	107
7	90	88	91	88	87	89	88	89	88	89	89	88	89
8	91	89	88	89	89	89	89	89	89	89	89	89	89
9	92	101	99	98	96	95	95	96	96	96	96	98	120
10	105	118	116	115	111	106	103	100	99	97	97	98	101
11	118	115	114	114	115	116	116	116	116	117	117	120	120
12	91	97	92	97	96	95	95	93	93	94	93	93	89
13	89	102	102	99	94	96	95	97	99	103	99	100	100
14	73	73	73	73	72	73	73	73	73	73	73	73	72
15	74	72	73	73	73	74	82	75	75	73	74	74	72
MD	98	99	99	99	97	97	98	97	97	97	97	97	97
DP	17,56	17,13	17,29	17,77	17,28	16,95	15,98	16,87	17,18	17,58	16,95	16,22	20,43
MAX	140	125	129	132	129	130	131	130	129	129	127	126	144
MIN	73	72	73	73	72	73	73	73	73	73	72	73	70

⁻ Valor não registrado

TABELA A6 Valores individuais de SpO₂ registradas nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				G	RUPO	BAG	SQUE	EZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	98	98	98	98	98	98	98	98	98	99	99	98	99
2	100	98	99	99	97	99	100	99	99	99	98	100	98
3	98	99	99	99	99	99	99	99	99	99	99	99	99
4	97	96	96	96	96	96	96	96	96	97	96	97	97
5	98	98	98	97	97	99	97	98	97	98	98	98	98
6	99	100	100	99	99	99	99	99	99	99	99	99	100
7	99	99	99	99	99	99	99	99	99	99	99	99	100
8	99	100	99	99	100	100	99	99	100	100	99	100	99
9	95	99	98	98	98	97	98	97	97	98	99	98	99
10	97	97	97	96	96	95	97	97	97	98	97	97	98
11	100	97	97	97	98	97	96	97	97	97	96	97	98
12	98	98	98	98	98	98	98	98	97	97	97	97	96
13	98	99	98	98	98	99	99	99	99	98	98	98	98
14	96	97	96	95	98	95	94	93	93	93	93	93	96
15	96	97	97	98	97	97	96	96	95	94	96	95	95
MD	98	98	98	98	98	98	98	98	97	98	98	98	98
DP	1,46	1,19	1,16	1,28	1,13	1,57	1,63	1,68	1,85	1,91	1,73	1,84	1,46
MAX	100	100	100	99	100	100	100	99	100	100	99	100	100
MIN	95	96	96	95	96	95	94	93	93	93	93	93	95

					GRU	PO PE	EEP-Z	EEP					
<u> </u>	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	98	99	98	98	98	98	98	98	99	98	98	99	98
2	96	98	98	96	98	97	95	96	96	99	99	96	96
3	97	-	-	-	-	-	-	-	-	-	-	100	100
4	98	99	99	99	99	99	99	99	99	99	99	99	99
5	98	98	98	97	99	98	99	99	98	97	96	98	98
6	96	96	96	96	96	96	96	95	96	96	96	95	96
7	99	99	98	99	99	99	98	99	99	99	98	99	99
8	95	96	95	97	96	94	93	92	92	94	93	95	96
9	97	99	99	99	99	98	98	99	98	99	99	99	99
10	97	97	98	97	98	97	98	97	98	98	97	98	99
11	98	99	99	99	99	99	99	98	98	98	98	98	99
12	98	98	99	99	99	97	99	99	99	98	99	99	99
13	98	93	92	98	99	99	99	100	99	99	99	99	99
14	99	99	97	99	99	99	99	100	99	99	99	100	100
15	99	99	99	99	98	99	99	99	98	99	98	99	99
MD	98	98	98	98	98	98	98	98	98	98	98	98	98
DP	1,19	1,76	1,99	1,18	1,07	1,48	1,85	2,21	1,94	1,47	1,73	1,61	1,35
MAX	99	99	99	99	99	99	99	100	99	99	99	100	100
MIN	95	93	92	96	96	94	93	92	92	94	93	95	96

⁻ Valor não registrado

TABELA A7 Valores individuais de ETCO₂ registradas nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

		JQUL							_				
				GI	RUPO	BAG	SQUI	EEZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	35	34	34	35	35	35	35	36	36	36	36	36	37
2	34	30	32	32	32	31	31	31	31	31	31	30	33
3	40	38	38	38	39	40	42	41	42	43	43	43	44
4	38	37	38	38	39	39	39	39	39	39	39	40	40
5	28	29	28	28	29	29	29	29	28	29	29	29	28
6	36	35	35	37	36	37	36	36	36	35	37	36	37
7	49	43	44	44	45	45	46	46	46	46	47	46	48
8	33	29	30	31	31	32	32	32	32	33	32	32	30
9	32	35	31	33	33	32	32	32	32	32	32	32	30
10	28	28	27	27	28	28	28	28	28	28	28	28	29
11	50	49	50	50	51	51	50	51	52	52	53	54	56
12	42	47	48	47	48	48	51	43	49	50	50	51	51
13	32	33	33	33	33	33	33	33	33	32	33	32	30
14	35	40	35	35	35	35	36	36	37	37	36	37	39
15	33	35	35	36	36	38	37	36	36	36	36	36	35
MD	36	36	36	36	37	37	37	37	37	37	37	37	38
DP	6,56	6,40	6,81	6,52	6,74	6,81	7,21	6,45	7,30	7,40	7,61	7,93	8,63
MAX	50	49	50	50	51	51	51	51	52	52	53	54	56
MIN	28	28	27	27	28	28	28	28	28	28	28	28	28

					GRU	JPO P	EEP-Z	ZEEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	41	42	41	41	41	41	41	43	42	42	43	43	39
2	30	32	31	30	30	30	30	30	29	29	29	29	27
3	32	31	32	33	32	32	32	32	32	32	36	32	34
4	34	34	34	34	34	35	35	35	35	35	35	35	35
5	43	42	43	43	43	43	43	44	44	44	44	44	45
6	25	28	25	25	25	26	25	26	26	26	27	27	26
7	36	34	37	36	36	36	35	36	36	36	37	37	39
8	46	47	47	47	47	47	48	47	47	48	48	48	49
9	42	47	48	48	49	49	49	49	49	50	50	50	52
10	36	45	46	46	46	47	48	45	44	43	44	43	50
11	44	48	48	48	47	47	47	46	47	47	47	46	45
12	34	32	34	34	34	34	34	34	33	33	33	33	31
13	53	55	57	57	58	58	58	60	59	59	60	60	65
14	32	32	31	31	32	31	31	31	31	30	32	31	33
15	28	30	30	30	31	31	32	31	31	31	32	32	36
MD	37	39	39	39	39	39	39	39	39	39	40	39	40
DP	7,59	8,36	8,97	9,01	9,09	9,06	9,27	9,28	9,24	9,41	9,14	9,29	10,60
MAX	53	55	57	57	58	58	58	60	59	59	60	60	65
MIN	25	28	25	25	25	26	25	26	26	26	27	27	26

TABELA A8 Valores individuais de PPI registrados nos tempos pré-intervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				G	RUPO	BAG	SQUE	EZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	15	14	14	14	14	14	14	14	14	14	13	14	14
2	14	14	14	14	14	14	15	14	14	14	14	14	14
3	15	17	16	16	16	16	15	15	15	15	15	15	16
4	15	15	15	15	16	15	15	15	15	15	15	15	15
5	17	18	18	18	18	18	18	18	18	18	19	18	18
6	17	17	18	18	19	19	18	19	18	18	18	18	18
7	16	16	17	17	17	17	16	16	16	16	17	17	16
8	21	21	21	21	20	20	21	21	21	15	16	21	20
9	20	21	21	21	21	21	20	20	20	21	20	20	19
10	15	14	14	14	14	14	14	14	14	14	14	14	14
11	16	16	16	16	15	16	16	16	16	16	16	16	15
12	18	18	18	18	18	18	18	18	18	18	18	18	19
13	18	18	18	18	18	18	19	19	19	19	18	22	18
14	17	15	16	16	16	17	16	16	16	16	16	16	17
15	15	16	16	16	16	16	16	16	16	16	16	16	17
MD	17	17	17	17	17	17	17	17	17	16	16	17	17
DP	1,99	2,26	2,24	2,24	2,18	2,17	2,15	2,28	2,23	2,06	1,99	2,55	1,99
MAX	21	21	21	21	21	21	21	21	21	21	20	22	20
MIN	14	14	14	14	14	14	14	14	14	14	13	14	14

					GRU	PO PI	EEP-Z	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	15	16	16	16	16	16	15	16	16	16	16	15	18
2	19	19	19	19	19	19	19	19	19	19	19	19	20
3	14	17	16	17	16	16	16	16	15	15	15	16	15
4	13	15	15	15	15	15	15	15	15	15	15	15	15
5	13	13	13	13	13	13	13	14	14	13	13	14	14
6	18	19	19	19	19	19	19	19	19	19	19	19	18
7	16	16	15	15	15	15	15	15	17	16	16	16	17
8	16	16	16	16	16	16	16	16	16	16	16	16	16
9	15	16	17	17	16	17	16	16	16	17	16	17	17
10	15	14	15	13	15	12	15	16	16	16	16	16	13
11	22	17	18	17	17	17	17	17	17	17	17	17	17
12	19	21	22	21	21	21	20	20	21	21	20	21	22
13	13	13	13	13	13	13	13	13	13	13	13	12	13
14	25	27	27	24	25	24	23	23	23	23	24	23	23
15	14	9	10	10	17	15	15	15	15	15	15	15	15
MD	16	17	17	16	17	17	16	17	17	17	17	17	17
DP	3,52	4,09	4,04	3,52	3,11	3,18	2,72	2,58	2,68	2,76	2,85	2,79	3,00
MAX	25	27	27	24	25	24	23	23	23	23	24	23	23
MIN	13	9	10	10	13	12	13	13	13	13	13	12	13

TABELA A9 Valores individuais de PPLATÔ registrados nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				GI	RUPO	BAG	SQUI	EEZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	13	12	12	13	13	13	13	13	13	13	13	13	13
2	13	13	13	13	13	13	13	13	13	13	13	13	13
3	12	14	14	14	14	14	13	13	13	13	14	14	14
4	14	13	14	14	14	13	13	13	13	14	14	14	14
5	15	15	16	15	16	16	16	16	16	16	16	16	16
6	15	16	16	16	17	17	17	17	17	17	17	16	17
7	15	14	15	15	15	15	15	15	14	15	15	15	15
8	18	17	17	18	17	17	18	17	17	18	18	17	17
9	14	17	17	17	17	17	17	17	17	17	17	17	16
10	13	12	12	12	13	13	13	13	13	13	13	13	13
11	14	14	14	14	13	14	14	14	14	14	14	14	13
12	17	16	17	17	17	17	14	17	17	17	17	17	17
13	16	16	17	17	16	16	16	16	16	16	16	16	16
14	13	14	14	14	14	14	15	15	14	14	14	16	14
15	14	14	14	14	14	14	14	15	14	14	14	14	15
MD	14	14	15	15	15	15	15	15	15	15	15	15	15
DP	1,64	1,64	1,78	1,77	1,64	1,64	1,71	1,67	1,71	1,75	1,69	1,51	1,55
MAX	18	17	17	18	17	17	18	17	17	18	18	17	17
MIN	12	12	12	12	13	13	13	13	13	13	13	13	13

					GRU	PO PI	EEP-Z	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	14	14	14	15	14	15	14	14	14	14	14	14	16
2	17	16	16	16	17	17	16	17	17	17	17	17	18
3	14	15	15	15	15	16	15	15	14	15	14	15	15
4	12	13	14	14	13	14	14	13	14	14	14	14	13
5	12	12	11	12	12	12	12	12	12	12	12	12	13
6	16	16	17	17	17	16	17	17	17	17	17	17	16
7	14	14	13	13	13	13	13	13	14	15	14	14	15
8	15	14	14	14	14	14	14	14	14	15	14	14	14
9	12	14	14	14	14	14	14	13	13	13	14	14	15
10	13	13	14	12	13	12	14	13	14	14	14	14	13
11	21	15	15	15	15	15	15	15	15	15	15	15	15
12	18	19	20	19	19	19	18	19	19	19	18	19	19
13	12	12	12	11	11	11	11	11	11	11	11	13	12
14	20	22	22	20	20	20	21	21	20	20	20	20	19
15	13	8	8	9	15	13	14	13	13	13	14	14	14
MD	15	14	15	14	15	15	15	15	15	15	15	15	15
DP	2,95	3,18	3,38	2,90	2,51	2,55	2,46	2,74	2,49	2,46	2,31	2,22	2,17
MAX	21	22	22	20	20	20	21	21	20	20	20	20	19
MIN	12	8	8	9	11	11	11	11	11	11	11	12	12

TABELA A10 Valores individuais de PFI registrados nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				GI	RUPO	BAG	SQUE	EEZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	18	16	18	17	17	16	15	18	17	16	17	16	17
2	19	18	20	20	19	18	18	19	19	20	17	19	20
3	20	19	19	20	19	18	18	19	19	19	17	18	18
4	18	16	16	18	18	17	16	19	17	18	17	17	17
5	24	22	22	23	23	23	24	23	23	23	22	24	23
6	18	17	17	17	18	18	18	18	18	18	17	17	17
7	13	17	15	15	15	17	17	17	17	17	16	18	16
8	16	16	16	16	16	16	15	16	15	15	16	16	15
9	34	26	25	25	25	26	25	25	25	25	25	25	26
10	19	21	19	18	18	19	21	18	18	18	18	19	20
11	22	23	23	22	24	21	22	23	21	21	23	21	22
12	34	32	32	35	32	34	32	33	31	33	33	32	34
13	21	21	22	22	22	21	21	22	22	22	21	22	22
14	18	18	19	19	19	20	20	19	20	19	19	19	19
15	26	26	26	26	25	27	27	27	26	26	25	25	24
MD	21	21	21	21	21	21	21	21	21	21	20	21	21
DP	6,01	4,64	4,55	5,07	4,48	4,98	4,79	4,54	4,26	4,64	4,74	4,41	4,86
MAX	34	32	32	35	32	34	32	33	31	33	33	32	34
MIN	13	16	15	15	15	16	15	16	15	15	16	16	15

					GRU	PO PI	EEP-Z	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	21	24	21	21	22	23	22	24	23	24	23	23	25
2	26	20	19	19	19	20	19	20	21	18	19	21	19
3	28	26	28	28	28	28	29	28	29	27	27	29	29
4	17	16	17	17	17	17	16	17	17	17	17	18	18
5	12	13	13	14	14	12	14	12	13	13	13	12	12
6	15	15	14	15	15	15	15	15	15	15	15	15	15
7	21	23	22	22	23	21	22	23	21	22	24	23	22
8	17	15	16	15	15	15	16	15	15	15	15	15	16
9	14	14	14	14	14	14	15	14	14	14	14	14	14
10	23	22	24	23	23	24	23	23	24	23	22	24	23
11	23	23	24	24	24	24	24	24	24	24	23	26	27
12	24	23	23	24	24	24	24	23	25	24	24	23	24
13	20	20	21	20	23	21	21	23	21	20	21	24	21
14	28	29	28	27	27	27	28	28	28	28	27	28	27
15	15	16	17	16	17	17	17	15	15	16	16	16	16
MD	20	20	20	20	20	20	20	20	20	20	20	21	21
DP	5,12	4,86	4,86	4,68	4,75	4,93	4,79	5,20	5,22	4,91	4,74	5,36	5,29
MAX	28	29	28	28	28	28	29	28	29	28	27	29	29
MIN	12	13	13	14	14	12	14	12	13	13	13	12	12

TABELA A11 Valores individuais de PFE registrados nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				G	RUPO	BAG	SQUE	EZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	41	39	40	44	42	41	41	41	42	41	41	42	44
2	37	36	40	42	37	39	39	38	38	39	31	38	39
3	33	30	36	36	36	37	43	45	41	42	39	47	40
4	27	25	26	25	26	27	25	28	26	26	28	26	28
5	42	45	44	44	47	43	43	43	43	47	45	44	45
6	35	29	27	28	17	19	18	18	20	19	19	21	21
7	28	26	25	26	25	26	26	28	26	27	27	27	28
8	45	38	38	44	40	40	45	41	43	43	43	46	47
9	33	21	22	23	22	22	22	22	22	22	23	23	29
10	32	32	34	34	32	33	34	34	33	35	36	35	36
11	39	38	40	39	38	41	40	40	42	42	40	41	42
12	45	42	44	45	45	44	36	44	44	44	44	42	45
13	37	36	35	35	35	36	37	37	35	36	35	36	36
14	28	30	24	26	29	29	25	27	26	26	29	27	30
15	42	41	42	43	43	44	46	47	47	44	46	45	51
MD	36	34	34	36	34	35	35	36	35	36	35	36	37
DP	6,05	6,94	7,69	8,12	8,89	8,25	9,14	8,93	9,01	9,13	8,49	8,96	8,63
MAX	45	45	44	45	47	44	46	47	47	47	46	47	51
MIN	27	21	22	23	17	19	18	18	20	19	19	21	21

					GR	UPO F	PEEP-	ZEEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	35	37	37	39	40	40	41	40	38	40	33	38	45
2	49	44	45	48	48	48	48	46	48	48	49	49	50
3	31	30	32	31	33	33	34	33	33	34	34	31	34
4	30	30	31	30	29	30	30	29	30	30	30	31	31
5	26	27	24	24	26	26	25	25	27	25	27	26	25
6	46	42	46	45	46	43	46	49	45	45	48	50	49
7	31	38	33	32	33	33	32	33	32	31	31	34	34
8	31	28	28	28	30	29	29	28	22	29	32	32	31
9	27	28	29	29	29	29	30	29	26	28	29	27	33
10	28	34	36	33	32	33	38	34	35	33	33	34	32
11	57	38	43	43	44	45	43	46	45	44	43	46	46
12	48	49	50	51	52	50	51	49	50	52	49	50	55
13	31	31	30	25	25	26	26	26	25	27	27	27	27
14	58	59	57	57	59	58	57	59	59	59	59	58	58
15	39	35	37	38	42	40	41	41	41	41	40	42	44
MD	38	37	37	37	38	38	38	38	37	38	38	38	40
DP	10,96	8,91	9,22	10,02	10,29	9,68	9,68	10,23	10,70	10,21	9,81	10,14	10,51
MAX	58	59	57	57	59	58	57	59	59	59	59	58	58
MIN	26	27	24	24	25	26	25	25	22	25	27	26	25

TABELA A12 Valores individuais de Rinsp registrados nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				GRU	РО В	AG S	QUEE	ZING	(BS)				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	6	6	6	5	5	5	5	6	6	6	6	6	5
2	5	5	5	5	5	5	5	5	5	5	5	6	3
3	6	10	8	7	8	8	6	7	7	8	7	7	6
4	6	6	6	7	6	6	7	6	7	6	6	7	6
5	7	8	8	8	7	7	7	8	8	8	8	7	7
6	7	7	8	7	8	8	8	8	8	8	8	6	6
7	7	7	8	8	7	7	6	7	7	7	6	6	6
8	11	16	16	15	14	14	13	14	14	15	14	13	11
9	10	11	9	9	9	9	9	8	8	9	8	8	7
10	8	7	5	5	5	6	5	5	6	5	5	6	6
11	10	7	6	6	6	6	6	6	5	5	5	5	7
12	5	6	6	6	6	6	13	6	6	5	6	6	4
13	7	9	9	9	9	8	8	8	8	8	8	9	7
14	6	7	7	7	6	6	6	6	6	6	6	6	6
15	7	8	7	7	7	6	6	6	6	6	6	6	6
MD	7	8	8	7	7	7	7	7	7	7	7	7	6
DP	1,82	2,73	2,67	2,47	2,31	2,23	2,58	2,19	2,17	2,56	2,25	1,94	1,74
MAX	11	16	16	15	14	14	13	14	14	15	14	13	11
MIN	5	5	5	5	5	5	5	5	5	5	5	5	3

					GRU	PO PI	EEP-Z	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	6	6	5	6	6	6	5	6	6	5	6	5	6
2	7	8	8	8	8	8	8	8	8	8	8	7	7
3	7	13	9	11	9	6	6	8	8	7	8	8	7
4	5	6	5	5	5	5	5	5	5	5	5	5	5
5	10	10	10	10	10	10	10	10	10	11	11	11	9
6	10	13	12	12	12	13	12	12	12	12	11	13	12
7	5	7	6	6	6	6	6	6	6	6	6	7	7
8	9	10	10	10	9	10	10	9	10	10	10	11	8
9	12	16	18	18	17	19	18	17	17	19	18	18	14
10	10	6	13	6	7	5	10	7	8	7	7	7	8
11	9	8	7	7	7	7	7	7	7	7	6	6	6
12	8	10	10	9	9	9	8	9	9	9	9	9	7
13	5	4	4	5	5	5	5	5	5	5	5	5	4
14	10	12	11	10	10	10	10	9	9	9	9	9	9
15	6	7	6	7	7	7	7	7	7	7	7	7	7
MD	8	9	9	9	8	8	8	8	8	8	8	9	8
DP	2,25	3,33	3,71	3,42	3,09	3,76	3,44	3,06	3,07	3,62	3,31	3,54	2,55
MAX	12	16	18	18	17	19	18	17	17	19	18	18	14
MIN	5	4	4	5	5	5	5	5	5	5	5	5	4

TABELA A13 Valores individuais de Rexp registrados nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				Gl	RUPO	BAG	SQUE	EEZIN	G				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	5	6	6	5	5	5	5	5	6	6	6	6	6
2	6	5	5	5	5	5	5	5	5	5	5	6	6
3	6	10	8	7	8	8	6	7	7	7	8	6	5
4	7	6	6	7	6	6	7	6	7	6	6	6	7
5	8	8	8	8	7	7	7	8	8	8	8	7	8
6	9	8	8	7	8	8	8	8	8	8	8	6	6
7	8	7	8	8	8	7	7	6	7	7	7	7	7
8	12	16	16	15	14	14	13	14	14	15	14	11	9
9	11	11	9	9	9	9	9	8	8	9	8	8	11
10	7	7	5	5	5	6	5	5	6	5	5	7	6
11	11	7	6	6	6	6	6	6	5	5	5	6	11
12	6	6	6	6	6	6	14	6	6	5	6	6	6
13	9	9	9	9	9	8	8	8	8	8	8	8	7
14	8	7	7	7	6	6	6	6	6	6	6	6	6
15	7	8	7	7	7	6	6	6	6	6	6	6	6
MD	8	8	8	7	7	7	7	7	7	7	7	7	7
DP	2,07	2,71	2,67	2,47	2,31	2,23	2,72	2,25	2,17	2,55	2,25	1,37	1,85
MAX	12	16	16	15	14	14	14	14	14	15	14	11	11
MIN	5	5	5	5	5	5	5	5	5	5	5	6	5

					GRU	PO PI	EEP-Z	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	6	6	5	6	6	6	5	6	6	5	6	6	6
2	9	8	8	8	8	8	8	8	8	8	8	8	7
3	10	13	9	11	9	6	6	8	8	7	8	11	10
4	6	6	5	5	5	5	5	5	5	5	5	7	6
5	8	10	10	10	10	10	10	10	10	11	11	9	8
6	10	13	12	12	12	13	12	12	12	12	11	8	10
7	5	7	6	6	6	6	6	6	6	6	6	6	6
8	6	10	10	10	9	10	10	9	10	10	10	8	8
9	7	16	18	18	17	19	18	17	17	19	18	18	10
10	10	6	13	6	7	5	10	7	8	7	7	7	8
11	8	8	7	7	7	7	7	7	7	7	6	6	7
12	8	10	10	9	9	9	8	9	9	9	9	9	8
13	4	4	4	5	5	5	5	5	5	5	5	3	3
14	10	12	11	10	10	10	10	9	9	9	9	8	10
15	7	7	7	7	7	7	7	7	7	7	7	7	6
MD	8	9	9	9	8	8	8	8	8	8	8	8	8
DP	1,96	3,33	3,66	3,42	3,09	3,76	3,44	3,06	3,07	3,62	3,31	3,28	2,00
MAX	10	16	18	18	17	19	18	17	17	19	18	18	10
MIN	4	4	4	5	5	5	5	5	5	5	5	3	3

TABELA A14 Valores individuais de Cst registrados nos tempos préintervenção, 0 ao 10° minuto e 30° minuto nos grupos: *BAG-SQUEEZING* e PEEP-ZEEP.

				G	RUPC	BAG	SQUE	EZING	;				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	53	53	51	50	50	50	51	50	50	49	50	50	50
2	59	58	54	58	55	55	54	55	54	52	54	55	55
3	58	46	48	48	45	46	48	47	47	44	46	47	45
4	46	46	47	45	44	47	47	48	48	43	43	45	47
5	59	55	52	54	52	52	52	52	51	50	50	53	51
6	42	42	38	40	39	40	38	38	40	40	40	39	39
7	34	41	39	36	35	35	36	38	37	34	36	36	37
8	30	34	33	32	35	34	31	33	33	32	32	32	33
9	55	45	45	44	44	43	43	44	44	43	43	44	46
10	44	51	48	48	47	46	47	47	48	46	45	47	47
11	56	60	59	57	61	55	55	56	53	53	53	54	59
12	40	44	44	43	43	42	59	41	43	43	43	43	39
13	43	47	43	43	43	45	46	45	44	47	44	48	46
14	50	52	52	49	48	48	48	45	48	49	47	45	46
15	54	51	55	50	54	55	53	52	53	53	53	52	48
MD	48	48	47	46	46	46	47	46	46	45	45	46	46
DP	9,20	6,89	7,04	7,22	7,29	6,69	7,61	6,56	6,09	6,36	6,27	6,61	6,79
MAX	59	60	59	58	61	55	59	56	54	53	54	55	59
MIN	30	34	33	32	35	34	31	33	33	32	32	32	33

					GR	UPO P	EEP-ZI	EEP					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'
1	72	81	69	68	68	69	72	71	70	70	74	78	68
2	34	40	41	39	38	39	39	38	38	39	39	39	37
3	42	37	38	39	37	45	31	40	40	39	40	39	36
4	58	60	57	53	59	57	56	58	55	56	53	57	59
5	40	42	42	40	40	42	41	41	40	40	40	39	33
6	36	34	36	36	34	34	33	32	33	34	35	35	33
7	48	51	52	50	50	47	49	47	50	40	40	48	47
8	44	43	42	44	42	41	41	41	42	40	40	41	40
9	51	42	39	37	39	37	40	41	42	41	41	38	38
10	51	51	44	57	50	54	49	47	48	44	46	44	46
11	32	53	50	50	53	50	49	51	52	51	51	50	52
12	39	35	33	35	34	36	38	34	33	35	37	36	33
13	63	66	67	72	71	70	69	73	71	70	71	71	66
14	38	38	39	38	38	41	37	37	38	39	39	40	39
15	45	47	44	41	36	43	41	43	40	40	37	37	38
MD	46	48	46	47	46	47	46	46	46	45	46	46	44
DP	11,25	12,95	10,82	11,61	12,12	11,15	12,04	12,33	11,78	11,50	12,04	13,00	11,80
MAX	72	81	69	72	71	70	72	73	71	70	74	78	68
MIN	32	34	33	35	34	34	31	32	33	34	35	35	33

TABELA A15 Valores individuais de PPI registrados nas 3 séries de 5 ciclos durante as manobras de BS e PZ.

	DP	9,64	5,51		6,81	2,66	3,54	8,49	3,06	6,00	20,50	2,65	6,36	3,06	9, 26	3,21
	MD	25	44	22	8	44	75	96	100	09	91	46	25	28	63	63
	2	29	44		73	48			66	09	80	44	47	22	20	62
	2	99	38		83		77	102	103	99	79	45	99	61	62	29
	2	41	49	22	98	40	72	06	26	54	115	49		22	22	61
	DP	2,65	3,00		69,01	4,36	96'8	0,00	4,58	5,77	12,50	3,51	2,31	4,36	1,73	2,65
	MD	54	40	45	75		7				•	45	22	28	22	65
	4	22	40		69	40	9/		26	63	81	42	26	61	26	62
	4	51	37		89	39	77	103	106	53	78	45	99	09	29	29
_	4	26	43	45	87	32	61	103	103	63	101	49	52	53	26	99
GRUPO BAG SQUEEZING (BS)	DP	3,00	2,89	10,50	5,29	5,57	17,10	5,51	11,24	3,21	20,31	5,51	2,65	14,53	9,61	5,86
ZIN	MD	53	41	. 69	84	35	, 87				. 76	42	48	, 29	49	99
	3	26	43	29	82	36	89	92	92	09	87	38	47	99	28	62
S S	3	20	38	69	06	40	98	94	110	24	83	48	51	53	39	64
O B	3	53	43	48	80	29	28	104	88	29	120	39	46	82	51	73
GRUP	DP	2,00	5,13	99'9	8,50	6,11	12,00	8,89	9,85	2,00	2,65	3,51	4,36	3,61	6,51	4,16
	MD				83		75 1						45		63	63
	2	53	48	61	80	41		102	-		83	39	48	28	63	62
	2	49	45	09	77	37	22	86	116	92	88	42	40	09	69	89
	2	51	38	49	93	29	63	85	26	09	84	35	47	53	99	09
	DP	5,03	6,03	2,00	2,08	3,61	9,71	4,00	49,22	4,93	3,79	4,58	2,89	11,72	10,82	5,03
	MD		42	28			74								61	99
		47	48	09			82								64	61
							9/									
	1	41	36	99	88	35	63	82	83	09	82	33	4	39	49	92
	u	_	7	က	4	2	6 63	_	∞	0	10	7	12	13	4	15

		_	∞	∞	_	9	7	_	2	0	9	&	0	∞		က
	DF	0,71	0,58	7,7	0,7	0,9	0,7	0,6	1,85	1,0	<u>α</u>	2,08	0,0	0,58	0,58	5.0
	MD	31	78	33	25	25	30	26	5 6	24	35	28	29	25	36	32
	2		27		25	26	30	26	28	23	36	26	29	25	37	27
	2	31	28	38		24	31	26	26	25	43	27	29	25	36	37
	2	30	28	27	24	25	30	27	24	22	22	30	59	26	36	33
	DP	0,00	1,53	0,00	0,58	1,15	0,58	0,00	1,53	1,15	6,43	4,04	0,58	0,58	0,58	1,53
	MD	30	53	28	25	25	53	56	56	25	53	53	28	22	37	56
	4	30	28	28	52	24	29	26	26	24	36	27	28	25	38	26
	4	30	29	28	25	26	30	26	28	26	24	27	29	25	37	28
	4	30	31	28	24	24	29	26	25	24	26	34	28	26	37	25
(P2)	DP	0,00	0,58	1,53	0,58	1,53	2,08	0,58	1,53	0,58	0,00	3,46	1,15	0,58	1,00	0,58
PEEP-ZEEP (MD	30	29	53	25	25	28	56	56	24	25	30	28	25	37	27
1	3	30	53	27	25	24	26	56	27	24	25	28	27	25	38	56
	3	30	53	30	24	27	30	26	26	25	25	28	29	25	36	27
טרטאט	3	30	30	29	25	25	29	25	24	24	25	34	27	26	37	27
5	DP	1,15	1,53	0,58	0,58	1,15	0,00	1,00	1,00	0,58	1,15	3,06	1,15	1,53	0,58	1,00
	MD	30	59	28	24	25	53	56	25	24	56	29	53	25	37	27
	2	59	28	59	24	26	59	26	26	24	27	26	28	25	38	56
	2	31	53	28	24	24	53	27	25	22	25	28	30	24	37	27
	7	29	31	28	23	24	29	25	24	24	25	32	30	27	37	28
	DP	2,00	1,53	1,53	1,15		1,00	1,53	1,53	1,00	0,58	4,04	1,53	1,73	0,58	
	MD	27	28	27	23	23	27	25	24	24	23	28	28	23	36	27
	1	27	27	27	22	23	27	25	25	23	24	24	26	24	36	27
	1	29	28	28	24		28	27	22	25	23	59	59	21	36	27
	1	22	30	22	22	23	26	24	24	24	23	32	28	24	32	27
	u	1	7	3 25 28 27 27	4	2	9	7	œ	6	10	=	12	13	4	15

TABELA A16 Valores individuais de PPLATÔ registrados nas 3 séries de 5 ciclos durante as manobras de BS e PZ.

										GRUI	S B	AG S	QUE	EZIN	GRUPO BAG SQUEEZING (BS)										
u	l	l	_	MD	DP	7	7	7	MD	DP	က	က	က	MD	DP	4	4	4	MD	DP	2	2	2	MD	DP
_	ı	ı	9	16	1,00	16	4	15	15	1,00	17	16	15	16	1,00	15	16	16	16	0,58	15	16	17	16	1,00
			ე	18	0,58	20	20	21	20	0,58	21	21	21	71	0,00	21	21	22	71	0,58	23	20	20	71	1,73
က	20 2	22 2	24	55	2,00	29	19	24	24	2,00	24	32	24	27	4,62	25			25	0,00	21			21	0,00
				71	0,58	19	24	19	7	2,89	20	21	21	7	0,58	20	21	7	7	0,58		21	20	7	0,71
				19	0,00	19	18	19	19	0,58	17	17	18	17	0,58	18	18	20	19	1,15	18		18	18	0,00
				31	3,00	33	31	31	32	1,15	30	59	33	31	2,08	27	28	53	28	1,00		32		32	0,00
				22	4,04	22	20	19	20	1,53	2	20	20	20	0,58	20	20		20	0,00	20	20		20	0,00
				16	0,58	16	15	17	16	1,00	16	15	17	16	1,00	4	16	16	15	1,15	15	17	17	16	1,15
				21	2,00	18	18	21	19	1,73	20	17	19	19	1,53	26	23	39	53	8,50	17	18	21	19	2,08
				25	1,73	24	23	26	24	1,53	25	23		24	1,41	21	20	22	7	1,00	34			34	0,00
				52	2,22	23	27	24	25	2,08	25	33	4	24	9,54	33	31	28	31	2,52	33	30	29	31	2,08
				24	2,08	28	23	23	22	2,89	33	22	21	56	6,11	26	30	28	28	2,00		32	22	27	7,07
			∞	19	1,00	19	17	17	18	1,15	17	15	15	16	1,15	17	15	18	17	1,53	17	15	17	16	1,15
				21	1,73	17	20	22	20	2,52	16	17	20	18	2,08	13	16	19	16	3,00	15	16	19	17	2,08
				23	2,31	25	24	23	24	1,00	25	27	26	56	1,00	24	27	22	24	2,52	24	24	23	24	0,58
										9	3UP	GRUPO PEEP-ZEEP (PZ)	EP-ZI	EEP (PZ)										
u			_	MD	DP	2	2	2	MD	DP	3	3	3	MD	DP	4	4	4	MD	DP	2	2	2	MD	DP
_	23 2	28 2	26	56	2,52	26	59	27	27	1,53	27	28	28	28	92,0	29	28	59	59	0,58	28	29		59	0,71
(į		- (1	0		0	į	00	0	1	0	Į	-	0		1	į	(0				(

	_	_	œ	_	_	4	0	4	4	_	7	2	0	80	œ	6
	DF	0,7	0,5	7,07	0,7	9,0	0,4	0,1	2,34	1,	8,0	1,	1,00	0,58	0,5	3,7
	MD	29	25	32	24	24	28	25	24	23	33	26	27	24	33	20
	2		25		24	24	28		27	22	34	25	28	24	33	24
	2	29	25	37		23	28	25	24	24	42	25	27	24	33	17
	2	28	26	27	23	24	78	25	22	24	24	27	26	25	8	18
	DP	0,58	0,58	0,58	0,00	0,58	0,58	0,58	0,58	1,15	99'9	2,89	1,00	0,58	1,15	0,58
	MD	29	27	27	23	23	28	22	24	24	27	27	27	24	34	24
	4	29	27	28	23	23	27	25	25	23	35	25	27	24	33	24
	4	28	27	27	23	24	28	25	24	25	23	25	28	24	33	25
	4	29	28	27	23	23	28	24	24	23	24	30	26	25	35	24
(PZ)	DP	92,0	1,00	0,58	0,58	0,58	0,58	0,58	1,00	0,00	0,58	3,21	0,58	0,58	0,58	0,58
	MD	28	27	27	24	23	27	24	24	23	24	56	56	24	32	25
PEEP-ZEEP	3	28	56	27	24	23	27	25	25	23	23	24	26	24	32	24
	3	28	27	28	23	24	27	24	24	23	24	25	27	24	33	25
GRUPO	3	27	28	27	24	23	28	24	23	23	24	30	26	25	32	25
<u>G</u>	DP	1,53	1,00	0,58	0,58	0,58	2,08	0,58	1,00	0,58	0,58	2,65	1,15	1,53	1,00	0,58
	MD	27	27	27	23	23	25	25	24	23	24	56	27	24	33	25
	2	27	56	27	23	24	27	25	23	22	24	24	26	24	32	24
	2	59	27	27	23	23	23	25	25	23	24	25	28	22	33	25
	2	26	28	26	22	23	26	24	24	23	23	29	28	25	34	25
	DP	2,52	1,73	1,53	1,00	0,71	0,58	1,73	1,15	0,58	0,58	3,51	1,73	1,73	1,73	1,00
	MD	56	56	24	7	22	24	24	24	23	22	25	56	22	31	25
	1	26	25	24	21	22	24	23	23	22	23	22	25	23	59	25
	1	28	25	25	22		24	56	25	23	22	25	28	20	32	56
	1	23	28	22	20	21	23	23	23	23	22	29	25	23	32	24
	L	_	7	3 22 25 24 24 1	4	2	9	7	∞	တ	10	7	12	13	4	15

TABELA A17 Valores individuais de PFI registrados nas 3 séries de 5 ciclos durante as manobras de BS e PZ.

	DP	21,36	7,51	0,00	0,00	4,95	20,51	0,00	0,00	0,00	23,09	2,31	4,95	15,89	35,92	1,15			DP	0,71	2,65	0,71	1,41	69'0	0,59	0,87	1,50	0,10	0,20	1,00	1,15	0,58	0,58	6,03
	MD	168	130	128	180	127	166	180	180	180	167	150	142	161	156	179			MD	20	23	29	16	4	15	22	17	15	24	23	24	20	28	22
	2	180	130		180	130			180	180	180	151	138	170	174	178			2		20		15	13	4	23	17	15	24	23	23	19	28	16
	2	180	123		180		180	180	180	180	180	147	145	171	180	180			2	19	25	28		4	15	22	15	15	24	24	25	20	29	28
	2	143	138	128		123	151	180	180	180	140	151		143	115	180			2	20	24	59	17	4	4	21	18	15	24	22	25	20	28	21
	DP	3,51	11,27	00,0	4,04	17,04	23,09	00,0	0,00	00,0	38,68	3,21	2,52	99,02	8,16	78,			DP	00,	2,89	,58	,15	0,0	0,58	0,	0,0	92,	9,	92,	9,	92,0	5,08	92,
	MD	176 3	124 1	103	175 4	109 1	167 2	180	180	180	158 3	140 3	148 2	160 2	45 3	71 7			Ω		22	29	16 1	12 0	15 0	2.	15	3	4	33	4	0:	63	9
	Α Ν	76 1.	18 1	-	73 1	25 10	80 1	=	80 1	80 1	80 1	42 1	•	177 1	69 1,	80 1.			4 N	1 2	19	29 2	17 1	12 1	15 1	2.	15 1	13 1	23 2	24 2	25 2	20 2	7 2	6
	4	72 1	17 1		73 1	10 1;	180 1	180	180 1	180 1	180 1	136 14	48 1,	.1 991	65 10	66 1			4	9	4	_	15	· 	4	7	5	3	24 2	23 2	4	0	8	6
	4	_	137 1	103	180 17	91 1	140 18	180 18	180 18	180 18	113 18	141	150 14	137 16	101	67 16			4	0 1	4	9	7	2	5	1	5	4	5	3	3	1	4	5 1
33)		_	_	_	_			<u> </u>	<u> </u>	•	`	`	`	_	16	9 16			_	8	6	5	0	0	~	8	0	8	8	0	0	0	സ ജ	8 7
SQUEEZING (BS	PP	3,6		6,8	8,66	6,81	31,75	0,00	0,00			15,13	12,49	13,28	23,4	3,4	ĺ	(P2)	DP	0,5	3,79	1,	1,0	1,0	0,58	0,5	0,0	2,0	0,5	1,00	1,00	1,00	0,58	0,58
EZII	MD	172	125	115	175	102	162	180	180	180	165	129	133	172	153	178	l II	EEF	MD	20	22	28	16	13	14	7	15	15	23	23	24	21	28	16
Saul	က	176	123	120	180	97	180	180	180	180	180	134	137	180	172	180	l li	E P-2	3	20	18	27	17	13	4	21	15	17	23	23	23	22	28	16
	က	169	117	117	165	110	180	180	180	180	178	141	143	157	127	180		O PE	3	19	25	29	16	12	4	22	15	13	24	22	25	20	27	17
GR UPO BAG		171	136	107	180	100	125	180	180	180	138	112	119	180	161	174		אטאי	3	20	24	27	15	4	15	2	15	4	23	24	24	21	28	16
GRU	DP	4,16	6,03	6,03	0,00	17,06	35,22	9,81	0,00	0,00	0,00	10,58	11,53	15,72	1,15	7,94		פ	DP	0,00	2,08	0,58	0,58	0,00	0,58	1,15	0,00	0,58	1,15	0,58	0,58	0,58	1,73	0,58
	MD		125	119	180	101	155	174	180	180	180	131	123	159	179	169			MD	20	22	28	17	12	4	71	15	13	23	22	23	20	30	17
	7	171	131	125	180	115	180	180	180	180	180	135	135	170	180	178			2	20	20	28	17	12	4	22	15	13	22	22	24	20	31	16
	7	165	124	120	180	106	171	180	180	180	180	139	112	166	180	166			7	20	23	28	16	12	4	22	15	4	24	23	23	21	28	17
	7	163	119	113	180	82	115	163	180	180	180	119	122	141	178	163			2	20	24	29	17	12	15	20	15	13	24	22	23	20	31	17
	DP	4,11	10,60	11,36	0,00	10,69	41,39	3,28	0,00	0,00	0,00	7,81	2,58	49,52	1,59	3,14			DP	92,0	2,89	3,79	2,08	000	0,58	0,	0,00	92,0	92,0	92,0	92,0	92,0	92,0	00,
	₽	~	120 1					~				25		25 4	72 1	74 8			ΠD	_			17		2	<u>Σ</u>	2	<u>8</u>	33	2	4	6	83	,
			131 1						_	_	_	_	_	_	78 1	78 1			_						4	2	5	2	83	83	4	9	28	9
			118																														27 2	
			110 1																														28 2	
		-	2																	⊢													4	-
	_	l`	. 4		7	۷,	9		~	٠,	_	_	_	_	_	_			_	ľ	. 4		7	٠,	9		~	٠,	_	_	_	_	_	_

TABELA A18 Valores individuais de PFE registrados nas 3 séries de 5 ciclos durante as manobras de BS e PZ.

									GRUPO		BAG S	3QUE	QUEEZING	IG (BS										
-		1		DP	7	7	7	MD	DP	က	က	က	MD	DP	4	4	4	MD	DP	2	2	2	1	DP
73				2,00	29	73	22	9/	3,06	9/	73	27	75	2,08	80	9/	26	28	2,08	72	80	82		5,29
72				4,04	92	71	22	74	2,65	92	73	84	28	5,69	9/	9/	83	78	4,04	63	78	79		8,96
99				5,03	78	09	28	75	10,39	77			1	0,00	88			88	0,00	78			28	0,00
9	•			5,03	94	100	104	66	5,03	98	107	102	102	4,51	98	106	86	101	4,62		66	103		2,83
65				5,51	20	20	26	73	5,20	73	79	20	74	4,58	75		82	79	4,95	75		70		3,54
9				10,07	20	77	91	79	10,69	9	83	94	82	13,05	61	82	91	79	15,87		82			00'0
9				16,64	62	77	8	73	10,02	53	90	93	79	22,28	09	72		99	8,49	28	72			9,90
83				7,57	84	82	96	87	7,57	86	81	92	87	7,09	73	86	100	86	13,50	88	86	96		5,13
136				8,08	137	128	138	134	5,51	132	135	140	136	4,04	143	124	142	136	10,69	138	131	144		6,51
121	•			4,93	124	109	125	119	96'8	29	108	130	66	36,35	75	106	113	98	20,22	63		101		26,87
86				5,13	94	94	106	86	6,93	93	101	100	86	4,36	103	66	107	103	4,00		113	106		4,95
113				15,04	109	88	86	92	12,50	117	96	87	100	15,39	87	107	106	100	11,27		117	82	_	24,75
7				7,51	72	25	64	63	10,01	20	40	29	29	16,52	9	42		22	18,38	92	44	70		13,80
2				11,24	29	82	28	99	13,58	61	26	20	63	5,86	99	29	63	29	3,51	63	62	61	62	1,00
80	105	96	94	12,66	80	105	86	94	12,90	90	105	108	101	9,64	6	109	100	102	6,24	92	96	86	96	1,53
									Ð	RUP	O PE	EP-Z	EEP ((PZ)										
~			MD	DP	2	2	2	MD	DP	က	က	က	MD	DP	4	4	4	MD	DP	2	2	2	MD	DP
26			31	5,51	39	37	38	38	1,00	41	41	40	41	0,58	39	43	37	40	3,06	26	78			13,44
39			38	1,15	42	43	42	45	0,58	43	45	43	44	1,15	45	47	44	45	1,53	26	28	71		8,14
22	24		22	1,53	28	29	31	53	1,53	29	34	30	31	2,65	31	21		41	14,14	29	77	29	20	5,77
16			22	8,72	24	25	23	24	1,00	29	28	26	28	1,53	28		27	28	0,71	64	22	79		12,12
7			24	3,54	25	25	30	27	2,89	26	30	27	28	2,08	29	52	31	37	12,74	53	52	54		0,95
30			33	3,06	36	44	43	41	4,36	27	39	39	35	6,93	36	4	47	45	5,69	4	28	62		9,59
27			33	6,51	33	32	37	34	2,65	31	34	33	33	1,53	30	36	35	34	3,21	52	9	49		5,58
27			22	7,07	35	21	22	56	7,81	34	27	24	28	5,13	36	25	23	28	7,00	48	64	54		8,23
24			24	0,58	27	26	26	56	0,58	27	27	27	27	00,0	28	31	30	30	1,53	09	46	29		7,63
7			22	1,00	24	22	27	24	2,52	17	30	19	22	7,00	27	40	52	40	12,50	31	91	63		30,03
51			40	12,12	52	42	36	43	8,08	53	22	44	21	99'9	22	42	40	46	8,14	79	22	62		11,53
43			4	2,08	48	48	4	46	4,04	39	44	4	4	2,52	4	47	4	43	3,46	9	53	69		8,02
28			24	8,14	38	29	33	33	4,51	34	33	33	33	0,58	37	38	34	36	2,08		82	90		3,54
9			28	4,93	9	61	64	63	2,08	62	99	62	63	2,31	89	64	09	64	4,00	78	77	72		3,21
36		38	38	2,52	34	40	37	37	3,00	4	40	37	39	2,08	35	39	37	37	2,00	62	63	89	64	3,21

7.3 Anexo III – 2ª Etapa

TABELA B1: Valores individuais para os dados antropométricos e tempo de CEC.

n	Sexo	CEC	Idade	Peso	Altura	IMC
1	m	141	62	71	164	26
2	f	96	63	68	160	27
3	f	sem	38	75	160	29
4	m	120	76	70	172	24
5	f	155	74	45	160	18
6	f	sem	60	57	156	23
7	f	82	63	62	162	24
8	m	31	82	57	160	22
9	m	72	77	56	167	20
10	m	85	73	66	174	22
11	m	sem	85	57	152	25
12	m	165	78	78	180	24
13	m	72	40	69	176	22
14	m	sem	59	80	170	28
15	m	222	67	57	161	22
M	D	113	66	65	165	24
D	P	54	14	10	8	3
MÁX	(IMO	222	85	80	180	29
MÍN	IMO	31	38	45	152	18

TABELA B2: Valores individuais de freqüência cardíaca para as técnicas ASPIRAÇÃO(ASP), *BAG-SQUEEZING* (BS) e PEEP-ZEEP (PZ) nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto.

						TÉCNIC	CA ASP	IRAÇÃ	O (ASF	P)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	98	105	102	100	99	98	99	97	95	94	94	93	101	96	93
2	99	103	104	102	101	101	101	101	101	100	101	100	97	99	98
3	95	120	120	111	103	100	103	100	99	102	98	98	95	95	93
4	125	140	139	142	140	141	140	142	144	135	133	135	122	146	147
5	133	132	132	132	132	132	132	132	132	132	133	133	133	132	132
6	90	94	92	91	89	86	85	84	84	85	86	85	85	81	78
7	100	103	100	100	99	99	99	99	97	101	101	101	101	100	99
8	107	118	112	115	133	133	106	114	107	111	115	108	108	107	109
9	91	96	93	91	90	91	91	90	86	92	91	91	92	99	98
10	103	113	106	108	105	104	104	104	103	103	102	102	101	103	100
11	90	124	108	108	101	95	94	95	95	96	95	97	110	95	91
12	122	117	118	118	119	120	120	120	121	121	121	122	121	122	122
13	75	75	75	74	74	73	73	73	73	73	73	74	75	77	80
14	81	84	82	80	80	79	80	79	81	80	80	82	80	79	79
15	98	98	97	96	97	97	96	97	96	96	96	96	96	96	91
MD	100	108	105	105	104	103	102	102	101	101	101	101	101	102	101
DP	15,93	17,67	17,27	18,00	19,20	19,89	18,01	18,75	19,02	17,49	17,55	17,39	15,87	18,99	19,61
MAX	133	140	139	142	140	141	140	142	144	135	133	135	133	146	147
MIN	75	75	75	74	74	73	73	73	73	73	73	74	75	77	78

					TÉ	CNICA	BAG	SQUEE	ZING (E	3S)					
<u>n</u>	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	97	101	106	105	104	102	103	101	102	100	101	100	101	100	98
2	96	96	95	95	95	95	95	96	96	96	96	95	95	96	96
3	88	108	94	92	86	85	89	89	90	89	92	93	96	92	98
4	141	139	135	127	120	119	120	126	117	122	112	120	131	124	122
5	131	130	130	130	130	130	131	131	131	131	131	131	132	133	133
6	78	81	79	77	77	77	76	76	77	77	77	78	79	82	84
7	100	101	96	98	98	98	97	96	96	97	99	100	98	98	100
8	107	115	108	105	104	109	102	100	106	104	106	103	104	114	107
9	97	101	99	97	97	97	99	101	100	100	99	100	97	97	96
10	101	101	98	98	99	99	100	99	100	99	101	99	102	105	104
11	80	123	92	88	88	86	88	88	96	96	92	89	88	87	91
12	123	115	120	120	121	122	122	122	122	123	123	123	123	123	123
13	84	81	86	85	85	84	83	81	82	81	82	81	82	82	79
14	83	90	85	82	81	82	80	80	80	80	81	82	84	84	86
15	96	95	96	104	95	95	95	95	96	96	96	96	97	97	98
MD	100	105	101	100	99	99	99	99	99	99	99	99	101	101	101
DP	18,60	16,77	16,09	15,64	15,27	15,58	15,63	16,39	15,08	15,71	14,73	15,29	16,38	15,98	15,05
MAX	141	139	135	130	130	130	131	131	131	131	131	131	132	133	133
MIN	78	81	79	77	77	77	76	76	77	77	77	78	79	82	79

						TÉCN	ICA PE	EP-ZE	P (PZ)						
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	99	104	104	102	102	102	101	101	100	100	100	100	100	97	98
2	96	97	97	97	97	97	97	97	98	97	97	96	94	97	91
3	87	87	84	84	82	83	82	83	84	83	84	83	84	89	84
4	136	142	142	143	139	141	143	143	131	144	135	145	147	125	131
5	133	131	132	132	132	132	132	132	133	133	133	133	133	132	131
6	88	91	86	85	84	84	84	84	84	83	83	83	87	91	88
7	100	102	100	100	99	99	99	99	99	99	99	99	99	98	99
8	104	111	106	111	101	106	103	101	108	105	107	107	108	105	109
9	96	97	97	95	95	95	95	87	95	94	95	95	94	91	93
10	105	105	104	102	101	103	103	104	105	104	105	106	105	103	102
11	109	111	91	90	89	95	93	91	91	92	91	90	91	88	96
12	123	116	119	119	120	121	121	121	122	122	122	122	124	124	123
13	81	80	80	79	79	79	79	79	79	80	80	80	82	82	84
14	87	89	87	85	85	85	82	81	81	82	85	85	88	88	84
15	92	92	92	93	93	93	93	93	93	93	93	93	93	93	92
MD	102	104	101	101	100	101	100	100	100	101	101	101	102	100	100
DP	16,67	16,73	17,67	18,27	17,73	17,93	18,53	18,87	17,11	18,90	17,32	19,01	18,90	15,18	16,17
MAX	136	142	142	143	139	141	143	143	133	144	135	145	147	132	131
MIN	81	80	80	79	79	79	79	79	79	80	80	80	82	82	84

TABELA B3: Valores individuais de pressão arterial média para as técnicas ASP, BS e PZ nos tempos Pré, 0 ao 10º, 30º, 60º e 120º minuto.

						TÉCNIC	CA ASP	IRAÇÃ	O (ASP) \					
	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	98	109	98	94	89	87	85	80	77	75	75	72	90	81	93
2	86	112	103	98	97	102	98	84	78	81	74	75	67	70	71
3	65	84	81	81	79	80	78	73	72	71	71	67	66	66	67
4	80	136	121	121	127	130	112	108	102	92	92	85	99	104	94
5	86	100	102	105	101	100	101	105	102	105	98	99	92	90	94
6	111	128	122	121	116	108	106	99	99	106	104	103	91	87	96
7	74	87	87	81	80	81	80	79	77	82	75	74	76	75	70
8	87	92	94	97	96	95	96	92	93	95	95	92	88	81	84
9	70	94	89	84	82	78	78	76	76	78	77	77	72	75	71
10	101	109	119	114	108	109	108	106	94	97	95	84	94	102	91
11	79	95	91	83	86	86	84	83	84	87	80	82	84	83	85
12	79	79	87	91	93	95	96	96	96	92	91	89	86	78	80
13	93	100	101	99	99	97	95	94	92	89	89	88	91	86	85
14	83	98	94	94	89	88	89	87	84	81	79	79	80	88	88
15	79	85	80	80	83	85	82	80	82	84	74	81	79	81	75
MD	85	101	98	96	95	95	93	89	87	88	85	83	84	83	83
DP	12,11	16,04	13,66	13,94	13,74	13,81	11,22	11,46	10,19	10,29	10,66	9,93	10,01	10,43	9,98
MAX	111	136	122	121	127	130	112	108	102	106	104	103	99	104	96
MIN	65	79	80	80	79	78	78	73	72	71	71	67	66	66	67

					TÉ	ÉCNICA	BAG	SQUEE	ZING (E	3S)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	103	113	100	93	94	93	90	92	92	91	93	93	95	94	108
2	78	103	95	92	88	81	81	81	77	74	71	68	76	76	78
3	83	96	91	87	84	85	88	84	81	79	72	71	71	70	68
4	95	122	122	123	122	120	113	109	104	100	93	92	73	73	89
5	98	107	108	110	111	112	112	105	105	98	100	106	93	68	82
6	97	113	110	105	102	106	106	99	102	96	97	98	102	102	85
7	72	72	78	78	78	78	80	81	75	72	72	72	72	71	73
8	89	85	93	93	95	93	92	92	88	89	90	87	86	93	85
9	71	89	87	84	82	77	73	74	76	72	72	70	74	73	70
10	98	108	101	104	99	101	100	94	100	97	103	95	99	92	95
11	85	89	88	85	85	83	79	81	80	84	86	82	79	77	81
12	115	123	131	132	134	130	129	126	126	120	123	121	89	83	83
13	86	89	98	99	98	97	97	96	94	92	92	91	91	90	93
14	82	97	94	91	85	88	95	85	82	78	79	76	78	81	81
15	93	97	97	101	101	103	103	94	104	95	95	97	94	93	79
MD	90	100	100	98	97	96	96	93	92	89	89	88	85	82	83
DP	11,91	14,34	13,65	14,73	15,52	15,68	15,16	13,30	14,47	13,02	14,43	14,98	10,62	10,80	10,20
MAX	115	123	131	132	134	130	129	126	126	120	123	121	102	102	108
MIN	71	72	78	78	78	77	73	74	75	72	71	68	71	68	68

						TÉCN	ICA PE	EP-ZEI	EP (PZ)						
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	99	117	107	102	100	97	96	95	94	94	97	94	98	97	93
2	81	104	94	87	87	89	81	78	75	75	75	73	67	73	81
3	73	97	92	88	88	93	90	88	85	85	79	79	85	92	81
4	80	115	112	115	114	114	112	103	111	106	99	97	101	70	82
5	95	105	99	103	99	96	94	94	88	84	87	89	90	86	100
6	102	105	104	101	97	98	98	99	101	98	101	97	98	113	108
7	76	76	76	76	76	78	77	74	74	75	73	72	69	71	70
8	91	90	94	94	95	94	98	92	89	90	91	89	92	91	89
9	70	87	82	77	77	71	73	73	72	72	74	72	69	72	70
10	94	94	104	99	93	94	99	92	89	88	89	89	93	95	89
11	83	94	85	83	82	84	82	85	83	83	86	84	81	86	93
12	80	94	93	93	93	93	94	88	87	86	83	83	75	80	79
13	83	92	92	92	92	92	91	90	89	87	85	85	86	85	88
14	85	96	92	87	80	82	82	77	71	71	70	70	67	76	81
15	75	82	80	82	78	79	81	78	73	80	74	73	79	80	84
MD	84	97	94	92	90	90	90	87	85	85	84	83	83	84	86
DP	9,72	11,23	10,26	10,73	10,48	10,37	10,38	9,28	11,36	9,73	9,98	9,46	11,96	11,88	10,20
MAX	102	117	112	115	114	114	112	103	111	106	101	97	101	113	108
MIN	70	76	76	76	76	71	73	73	71	71	70	70	67	70	70

TABELA B4: Valores individuais de saturação periférica de oxigênio para as técnicas ASP, BS e PZ nos tempos Pré, 0 ao 10°, 30°, 60° e 120° minuto.

					•	TÉCNIC	CA ASP	IRAÇÃ	O (ASP	P)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	99	100	100	100	100	100	100	100	100	100	100	100	99	99	99
2	99	99	99	100	100	99	98	98	99	98	98	98	99	99	99
3	97	99	95	98	98	98	98	98	98	98	97	97	97	97	97
4	98	100	100	100	100	100	100	100	99	98	98	97	99	97	98
5	97	98	98	98	98	99	98	97	98	98	98	98	98	97	96
6	98	98	99	99	99	99	99	99	99	99	99	99	98	98	98
7	98	99	99	99	99	99	99	99	99	99	98	98	98	99	98
8	98	95	94	96	96	98	99	98	99	99	98	99	99	98	98
9	98	99	99	99	99	99	99	99	99	99	99	99	98	98	98
10	98	98	99	98	98	98	98	98	97	98	98	97	98	97	98
11	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98
12	96	95	98	98	98	98	98	98	98	98	97	97	96	95	95
13	97	98	98	98	98	99	98	98	97	97	96	97	97	96	96
14	99	99	99	99	100	99	99	100	99	99	99	99	99	99	99
15	91	93	94	94	94	94	95	93	92	92	92	92	93	94	94
MD	97	98	98	98	98	98	98	98	98	98	98	98	98	97	97
DP	1,96	2,00	1,98	1,58	1,63	1,41	1,18	1,70	1,87	1,81	1,84	1,84	1,58	1,50	1,50
MAX	99	100	100	100	100	100	100	100	100	100	100	100	99	99	99
MIN	91	93	94	94	94	94	95	93	92	92	92	92	93	94	94

					ΤÉ	CNICA	BAG	SQUEE	ZING (E	3S)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	98	97	100	100	100	100	100	99	100	99	99	98	98	99	100
2	99	99	100	100	99	99	99	99	99	99	99	99	99	99	99
3	98	97	98	99	98	99	98	98	98	98	98	98	97	97	97
4	98	100	99	100	99	99	99	99	99	98	98	98	98	98	98
5	98	99	98	99	99	99	98	98	98	98	98	97	97	97	98
6	98	99	99	99	99	99	99	99	99	98	98	98	98	98	98
7	97	96	97	97	97	97	97	97	97	97	97	97	97	100	98
8	96	92	93	93	99	90	98	100	95	99	98	99	99	97	98
9	99	99	99	99	99	99	98	98	98	98	98	98	98	98	98
10	98	98	98	98	98	97	96	98	98	98	98	98	97	97	97
11	99	99	99	99	99	99	99	99	98	98	99	99	99	99	98
12	96	93	99	98	99	98	98	98	98	97	97	97	96	96	96
13	95	99	98	98	98	98	98	97	97	97	97	98	96	95	95
14	99	99	99	99	99	99	99	99	100	99	99	99	98	98	98
15	92	89	93	94	95	95	95	93	93	92	91	92	92	93	92
MD	97	97	98	98	98	98	98	98	98	98	98	98	97	97	97
DP	1,91	3,21	2,15	2,07	1,19	2,48	1,28	1,62	1,82	1,72	1,96	1,72	1,75	1,76	1,88
MAX	99	100	100	100	100	100	100	100	100	99	99	99	99	100	100
MIN	92	89	93	93	95	90	95	93	93	92	91	92	92	93	92

						TÉCN	ICA PE	EP-ZEE	P (PZ)						
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	99	100	99	99	100	98	99	98	99	98	98	99	99	99	99
2	99	100	99	100	99	98	98	98	98	98	98	98	98	99	99
3	96	99	99	99	99	99	99	100	100	98	98	98	98	98	98
4	97	100	100	100	100	100	100	99	99	98	98	98	98	97	98
5	97	99	98	98	98	98	98	98	98	98	98	98	98	98	98
6	97	99	99	99	99	99	99	99	99	99	99	99	98	98	98
7	97	98	98	99	98	98	98	98	98	98	97	98	97	98	97
8	98	98	99	98	98	99	98	99	98	98	98	98	97	95	96
9	98	99	99	99	99	99	99	99	99	99	99	99	98	98	98
10	98	98	98	98	98	98	98	98	98	98	97	97	97	97	98
11	98	98	99	99	99	99	99	99	99	99	99	99	99	99	99
12	97	98	99	99	98	98	98	98	98	97	97	97	96	96	96
13	97	98	98	98	98	98	98	98	98	98	98	97	95	95	95
14	98	99	99	99	99	99	99	99	99	98	98	98	98	99	99
15	94	92	94	94	95	95	95	93	93	93	93	93	93	93	92
MD	97	98	98	99	98	98	98	98	98	98	98	98	97	97	97
DP	1,23	1,91	1,36	1,41	1,19	1,11	1,11	1,57	1,57	1,42	1,45	1,49	1,58	1,79	1,91
MAX	99	100	100	100	100	100	100	100	100	99	99	99	99	99	99
MIN	94	92	94	94	95	95	95	93	93	93	93	93	93	93	92

TABELA B5: Valores individuais de $EtCO_2$ para as técnicas ASP, BS e PZ nos tempos Pré, 0 ao $10^{\rm o}$, $30^{\rm o}$, $60^{\rm o}$ e $120^{\rm o}$ minuto.

N	-	TÉCNICA ASPIRAÇÃO (ASP)														
2	n	Pré	0'	1'	2'							9'	10'	30'	60'	120'
3	1	33	34	39	39	33	33	33	33	34	34	35	35	34	34	35
	2	32	23	29	30	30	30	30	30	32	33	31	31	32	32	31
5	3	39	44	46	47	44	40	40	41	41	41	41	41	41	41	40
6	4	31	31	31	32	33	30	32	33	31	31	31	31	31	30	31
Record R	5	44	41	45	47	44	47	47	49	48	52	48	48	48	47	47
8 39 37 42 44 44 40 40 41 42 41 31 35 31 32 29 28 28 29 30 32 32 33 33 33 33 35 36 38 37 37 37 37 37 36 36 36 36 36 36 37 37 37 37 37 37 37 37 38 </td <td>6</td> <td>36</td> <td>37</td> <td>38</td> <td>36</td> <td>36</td> <td>34</td> <td>33</td> <td>33</td> <td>34</td> <td>35</td> <td>32</td> <td>34</td> <td>34</td> <td>33</td> <td>35</td>	6	36	37	38	36	36	34	33	33	34	35	32	34	34	33	35
9 30 29 32 32 31 31 31 30 30 31 30 32 32 31 31 31 10 36 36 34 38 34 34 32 32 33 33 33 34 35 36 35 36 37 11 31 35 31 32 29 28 28 29 30 32 32 32 33 33 35 35 12 35 31 39 38 38 37 37 37 37 37 37 37 37 36 34 37 13 46 46 46 44 47 45 45 45 43 48 45 45 45 45 52 51 48 14 29 34 32 32 31 30 30 30 30 30 31 30 30 30 30 30 30 30 30 30 30 30 30 30	7	42	43	43	41	42	41	44	44	44	44	45	45	43	43	45
10	8	39	37	42	44	44	40	40	41	42	41	41	41	41	41	40
11	9	30	29	32	32	31	31	31	30	31	30	30	32	32	31	31
12	10	36	34	38	34	34	32	32	33	33	34	35	36	35	36	37
13	11	31	35	31	32	29	28	28	29	30	32	32	32	33	33	35
14	12	35	31	39	39	38	38	37	37	37	37	37	37	36	34	37
MD	13	46	46	46	44	47	45	45	43	48	45	45	45	52	51	48
MD	14	29		34	32	32	31	30	30	30	30	31	30	30	30	30
DP 5,21 6,43 5,68 5,82 5,93 5,84 6,06 6,15 6,33 6,39 5,95 5,77 6,48 6,42 5,98 MAX 46 46 46 47 47 47 47 49 48 52 48 48 52 51 48 MIN 29 23 29 30 29 28 28 29 30 30 30 30 30 30 30 3	15	37	31	38	39	35	36	38	38	37	35	36	37	38	35	43
MAX 46 46 46 47 47 47 47 49 48 52 48 48 52 51 48 MIN 29 23 29 30 29 28 28 29 30 31 420 43 43 43 42 41 40 42 41 41 4		36	35	38	38	37		36	36	37	37	37	37	37	37	38
Nin 29 23 29 30 29 28 28 29 30 30 30 30 30 30 30 3		5,21		5,68	5,82	5,93		6,06		6,33		5,95	5,77			
TÉCNICA BAG SQUEEZING (BS) n Pré 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 30' 60' 120' 1 33 41 46 37 38 37 37 36 37 37 38 36 40 36 2 31 23 32 38 32 32 33 31 32 32 31 33 33 33 32 3 43 46 44 42 41 41 42 43 42 43 43 43 42 41 40 4 30 37 35 32 32 31 32 32 35 34 34 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48						47		47	49			48	48			
n Pré 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 30' 60' 120' 1 33 41 46 37 38 37 37 36 37 37 38 36 40 36 2 31 23 32 38 32 32 33 31 32 32 31 33 33 32 3 43 46 44 42 41 41 42 43 42 43 43 43 42 41 40 4 30 37 35 32 32 31 32 32 35 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33	MIN	29	23	29	30	29	28	28	29	30	30	30	30	30	30	30
n Pré 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 10' 30' 60' 120' 1 33 41 46 37 38 37 37 36 37 37 38 36 40 36 2 31 23 32 38 32 32 33 31 32 32 31 33 33 32 3 43 46 44 42 41 41 42 43 42 43 43 43 42 41 40 4 30 37 35 32 32 31 32 32 35 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33		TÉCNICA RAG SOLIFEZING (RS)														
1 33 41 46 37 38 37 37 36 37 37 38 36 40 36 2 31 23 32 38 32 32 33 31 32 32 31 33 33 32 3 43 46 44 42 41 41 42 43 42 43 43 43 42 41 40 4 30 37 35 32 32 31 32 32 35 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33 36 35 35 34 34 33 33 35 34 34 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44		Pré	0'	1'	2'							Q'	10'	30'	60'	120'
2 31 23 32 38 32 32 33 31 32 32 31 33 33 32 3 43 46 44 42 41 41 42 43 42 43 43 43 42 41 40 4 30 37 35 32 32 31 32 32 35 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33 36 35 35 34 34 33 33 35 34 34 33 33 35 34 34 44																
3 43 46 44 42 41 41 42 43 42 43 43 43 43 42 41 40 4 30 37 35 32 32 31 32 32 35 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33 36 35 35 34 34 33 33 35 34 34 35 33 32 33 7 42 41 40 42 43 43 42 42 44 44 44 43 44 46 49																
4 30 37 35 32 32 31 32 32 35 34 32 31 30 30 31 5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33 36 35 35 34 34 33 35 34 34 35 33 32 33 7 42 41 40 42 43 43 42 42 44 44 44 43 44 44 44 8 41 30 38 39 37 39 38 38 40 40 40 40 43 41 40 9 30 39 31 31 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34																
5 45 46 49 53 48 51 47 47 50 38 48 52 50 46 43 6 33 36 35 35 34 34 33 35 34 34 35 33 32 33 7 42 41 40 42 43 43 42 42 44 44 44 43 44 44 44 8 41 30 38 39 37 39 38 38 40 40 40 40 43 41 40 9 30 39 31 31 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 34 34 34 32 32 36 34 34 34 32 32 36 34 34 34 34 34																
6 33 36 35 35 34 34 33 35 34 34 35 33 32 33 7 42 41 40 42 43 43 42 42 44 44 44 43 44 40																
7 42 41 40 42 43 43 42 42 44 44 44 43 44 44 44 43 44 40 </td <td></td>																
8 41 30 38 39 37 39 38 38 40 40 40 40 43 41 40 9 30 39 31 31 32 32 32 32 32 32 33 33 33 33 33 33 33 33 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 38 37 37 37 38 38 38 37 37 36 38 38 38 37 37 36 38 38 38 37 37 36 40 40 40 40 40 40 40 40 40 40 40 40 40 40																
9 30 39 31 31 32 32 32 33 32 32 32 33 33 33 33 33 10 35 38 36 36 36 36 39 39 39 39 39 39 38 38 11 34 38 33 33 32 30 30 31 34 32 32 36 34 34 12 38 33 39 39 38 37 37 37 38 38 38 38 37 37 36 13 53 44 47 46 46 44 46 49 47 49 49 50 53 56 52 14 29 24 31 29 28 27 27 28 28 28 27 31 29 15 34 33 34 28 33 34 35 35 35 37 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>40</td> <td></td> <td></td> <td></td> <td>43</td> <td>41</td> <td></td>										40				43	41	
10 35 38 36 36 36 36 39 39 39 39 39 39 39 39 38 38 38 11 34 38 33 33 32 30 30 31 34 32 32 36 34 34 12 38 33 39 39 38 37 37 38 38 38 37 37 36 13 53 44 47 46 46 44 46 49 47 49 49 50 53 56 52 14 29 24 31 29 28 27 27 28 28 28 27 31 29 15 34 33 34 28 33 34 35 35 35 37 37 37 38 38 38 38 38 38 38 38 MD 37 37 39 38 37 37 37										32		32				
11 34 38 33 32 30 30 31 34 32 32 36 34 34 12 38 33 39 39 38 37 37 38 38 38 38 37 37 36 13 53 44 47 46 46 44 46 49 47 49 49 50 53 56 52 14 29 24 31 29 28 27 27 28 28 28 27 31 29 15 34 33 34 28 33 34 35 35 35 37 37 37 38																
12 38 33 39 39 38 37 37 38 38 38 38 37 37 36 13 53 44 47 46 46 44 46 49 47 49 49 50 53 56 52 14 29 24 31 29 28 27 27 28 28 28 27 31 29 15 34 33 34 28 33 34 35 35 35 37 37 37 37 38 38 38 38 38 MD 37 37 39 38 37 37 37 37 38 37 38 38 38 38 38 DP 6,81 7,29 5,85 6,49 5,46 6,08 5,64 6,30 6,27 5,35 6,25 6,89 7,15 6,87 5,96			38													
13 53 44 47 46 46 44 46 49 47 49 49 50 53 56 52 14 29 24		38														
14 29 24 31 29 28 27 27 28 28 28 27 31 29 15 34 33 34 28 33 34 35 35 35 37 37 37 37 38 38 MD 37 37 39 38 37 37 37 38 37 38 38 38 38 38 DP 6,81 7,29 5,85 6,49 5,46 6,08 5,64 6,30 6,27 5,35 6,25 6,89 7,15 6,87 5,96																
15 34 33 34 28 33 34 35 35 35 37 37 37 37 38 38 MD 37 37 39 38 37 37 37 38 38 38 38 38 38 DP 6,81 7,29 5,85 6,49 5,46 6,08 5,64 6,30 6,27 5,35 6,25 6,89 7,15 6,87 5,96	14		24				29	28			28					
MD 37 37 39 38 37 37 37 37 38 37 38 38 38 38 38 37 DP 6,81 7,29 5,85 6,49 5,46 6,08 5,64 6,30 6,27 5,35 6,25 6,89 7,15 6,87 5,96				34	28											
		37	37	39	38		37	37			37	38	38	38	38	
MAX 53 46 49 53 48 51 47 49 50 49 49 52 53 56 52	DP	6,81	7,29	5,85	6,49	5,46	6,08	5,64	6,30	6,27	5,35	6,25	6,89	7,15	6,87	5,96
	MAX	53	46	49	53	48	51	47	49	50	49	49	52	53	56	52

	TÉCNICA PEEP-ZEEP (PZ)														
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	36	35	36	32	32	33	34	34	34	36	35	35	36	36	35
2	31	28	33	31	31	32	32	30	31	32	31	33	33	32	31
3	42	43	42	41	41	42	43	45	45	45	45	45	45	44	43
4	28	32	31	30	30	30	31	31	29	30	30	30	29	31	31
5	46	49	46	47	47	46	49	47	49	46	49	49	47	47	47
6	34	31	38	36	36	35	35	34	33	33	34	35	33	35	32
7	46	39	38	39	42	45	45	47	44	46	46	45	45	44	45
8	37	35	37	41	35	36	38	42	43	40	40	41	38	42	39
9	31	28	30	30	29	29	29	28	28	28	29	30	29	28	28
10	34	37	38	37	36	36	34	34	36	38	37	39	36	38	37
11	32					29		29	29	30	31	33	33	33	32
12	33	28	35	35	35	35	35	35	35	34	35	34	34	36	36
13	45	43	48	50	50	51	51	53	52	55	50	50	54	54	55
14	28		27		27	20		25		38				25	25
15	39	33	40	37	38	38	41	40	38	41	38	37	38	40	36
MD	36	35	37	37	36	36	38	37	38	38	38	38	38	38	37
DP	6,20	6,57	5,85	6,24	6,73	7,85	7,00	8,28	7,79	7,50	7,12	6,71	7,32	7,67	7,93
MAX	46	49	48	50	50	51	51	53	52	55	50	50	54	54	55
MIN	28	28	27	30	27	20	29	25	28	28	29	30	29	25	25

TABELA B6: Valores individuais de PPI para as técnicas ASP, BS e PZ nos tempos pré-intervenção, durante as manobras, 0 ao 10º, 30º, 60º e 120º minuto após as manobras.

Ш	19	100		SÉRIE	IIII		\mathbf{I}	a		\mathbf{I}	Γμ	'ÉCNICA BAG 3a SÉR	A BAG a SÉR		EZIN	SQUEEZING (BS)							\mathbf{I}					IIII
Pré 1 2 3 4 5 1	3 4 5	3 4 5	4 2	ς ²		- 2	- 4		8 4 4 8	5	7 7	2 5	დ წ	4	2 2	3 o	- ;	, v	რ ^გ	4 5	. 5		, c	∞ c	9, 10	3 3	60,	120
102 115 73 72 66 79	115 73 72 66 79	73 72 66 79	72 66 79	8 6 6	5 R		- 10					8 8	2 6	101	115	5 6	10	200	9 6									
40 46 47 47 77 46	46 47 47 77 46	47 47 77 46	47 77 46	77 46	94							3 25	37	37	84	28	26	25	26									
45 50 47 49 45	50 47 49 45	47 49 45	49 45	49 45	42			50 48				45	4	32	31	21	21	21	71									
51 51 52 57 57 50	51 52 57 57 50	52 57 57 50	57 57 50	57 50	20							32	32	36	37	7	21	21	22									
46 44 58 50 40 33	44 58 50 40 33	58 50 40 33	50 40 33	40 33	33				26 40			78	32	33	33	27	28	28	78									
42 28 34 30 35 67	28 34 30 35 67	34 30 35 67	30 35 67	35 67	29							34	33	32	56	22	22	21	72									
48 48 48 54 40 43	48 48 54 40 43	48 54 40 43	54 40 43	40 43	43		22	•		1 46		4	33	33	48	22	22	22	22									
31 33 34 31 29 30	33 34 31 29 30	34 31 29 30	31 29 30	29 30	30		φ.					30	78	33	30	17	17	17	22									
72 52 43 48 50	52 43 48 50	43 48 50	48 50	20			~	8	_			30	23	43	28	15	15	16	17									
32 24 67 35 30	24 67 35 30	67 35 30	35 30	30	8		~	7				78	33	8	32	16	16	12	17									
34 32 31 22 25 25	32 31 22 25 25	31 22 25 25	22 25 25	25 25	52		တ္သ	4				22	27	22	19	18	19	19	9									
41 51 44 42 42 39	51 44 42 42 39	44 42 42 39	42 42 39	42 39	36		4	4				43	4	32	37	8	30	29	90									
22 32 32 31 30 26	32 32 31 30 26	32 31 30 26	31 30 26	30 26	5 1		တ္က (C)				27	: 33	္က မ	5 8	8 3	20	20	5 5									
45 50 51 47 48	50 54 47 48 45	51 47 48 45	28 29 2/ 47 48 45	29 2/	27	1	۾ ام	ಎ 4	36 36 46 45	30	+	43 24	4	72 82	β 2	4 6	24	22	4 6				47 6					
20 28 23 21 23 19	28 23 21 23 19	23 21 23 19	21 23 19	23 19	6		2 %	רא				3 2	4 5	3 6	1 12	4 4	4	4	4 4			•						
102 116 116 108 103 84	116 116 108 103 84	116 108 103 84	108 103 84	103 84	2 48	•	_	1 =			_	116	: 8	5 5	115	90	30	29	30									
22 24 31 22 25 25	24 31 22 25 25	31 22 25 25	22 25 25	25 25	52		့	. Ñ	24.2			2	8 8	2	19	15	15	15	12									
												TECN	CAP	TÉCNICA PE EP.ZEEP	FEP ((PZ)												
la SËRIE 2a S	ERIE 2a	ERIE 2a	ERIE 2a	- 2a8	2a\$	2a (2a \$	177	SÉRIE			3	a SER	KE														
1 2 3 4 5 1 2	2 3 4 5 1 2	3 4 5 1 2	4 5 1 2	5 1 2	1 2	2		100			⊢	2	က	4	2	O,	<u>-</u>	2	'n			.9	7		ľ	Ľ	Ľ	120'
27 25 25 28 24 42	25 25 28 24 42	25 28 24 42	28 24 42	24 42	42		9	N				27	27	78	27	23	21	18	19									21
29 30 30 29 28 29	30 30 29 28 29	30 29 28 29	29 28 29	28 29	59	_	0	Ñ				29	30	53	31	20	20	19	21									19
32 32 32 32 32	32 32 32 32 32	32 32 32 32	32 32 32	32 32	32		Ŋ	3				32	32	32	32	31	31	31	31									56
22 21 20 21 22 22	21 20 21 22 2	20 21 22 22	21 22 22	22 22	22		0:	Ø				20	22	20	22	71	22	21	22									72
26 27 26 28 27 24	27 26 28 27 24	26 28 27 24	28 27 24	27 24	24		9	Q				27	54	27	27	71	21	21	7									20
28 28 27 28 28 28 27 28 29 27 28 29 27 28 29 27 24 25 26 25	27 28 28 28 27 24 27 24 25 26	28 28 28 27	28 28 27 24 25 26	28 27	27		ထု ဟု	% %	8 8	3 29	27	% 88	% 88	% %	% %	27	28	28	27	88	27	27	28	27 2	28 28 29 29 29	3 27		27
32 32 30 31 29 26	32 30 31 29 26	30 31 29 26	31 29 26	29 26	56		φ,	n				30	3	38	24	27	22	22	72									22
26 25 26 25 25 26	25 26 25 25 26	26 25 25 26	25 25 26	25 26	56		ဖွ	Ñ				26	26	56	22	18	17	17	17									17
20 21 22 23 21 23	21 22 23 21 23	22 23 21 23	23 21 23	21 23	23		Q.	2				22	24	70	23	4	15	16	15									13
25 28 28 28 27	28 28 28 27	28 28 28 27	28 28 27	28 27	27		7	7				53	53	53	29	17	17	16	17								17	17
27 27 27 27 26	27 27 27 27 26	27 27 27 26	27 27 26	27 26	56		7	7				27	27	27	27	18	18	19	19									19
29 29 29 30 30 30	29 29 30 30 30	29 30 30 30	30 30 30	30 30	30	_	0	ñ	_			30	30	31	8	29	28	30	30									31
26 25 25 25 24	25 25 25 25 24	25 25 25 24	25 25 24	25 24	24		5	Ö				22	24	24	24	20	20	20	20									20
30 31 31 30 31 31	31 31 30 31 31	31 30 31 31	30 31 31	31 31	31) 29		32	32	32	32	24	24	24	24				24				24	54
72 72 72 72 72	72 72 72 72	27 27 27	27 27	27	H	88	14				⊢	78	27	27	27	52	22	22	72									7
3 4 3 3 3	4 3 3 3	3 3	3	က		2						က	က	4	က	2	2	2	2									4
32 32 32 32 42	32 32 32 42	32 32 32 42	32 32 42	32 42	45		22					32	32	32	32	ઝ	31	31	3			23	29	30 3				ઝ
20 21 20 21 21 22	21 20 21 21 22	20 21 21 22	21 21 22	21 22	22		Q.	7			_	20	52	70	22	4	15	16	15			. 91						13
							l	Ĺ				l		l	١		l		l	l		ĺ	l		l	l		

				1	ÉCN	ICA	ASPI	RAÇ	ÃO (ASP)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	19	21	21	25	23	23	22	22	22	20	20	20	22	20	20
2	30	20	19	19	19	18	21	19	21	23	19	20	20	20	20
3	26	28	27	26	26	26	26	26	26	26	26	26	26	26	26
4	21	20	20	21	21	21	21	21	20	21	21	21	22	21	21
5	21	22	22	22	22	22	21	23	21	23	22	22	23	22	22
6	27	27	28	28	27	28	27	28	27	28	28	28	28	28	28
7	17	16	16	17	17	17	17	17	17	16	17	17	16	17	17
8	26	28	26	26	26	26	26	26	26	26	26	26	26	26	26
9	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
10	19	16	17	19	17	16	16	16	15	15	17	16	15	17	17
11	16	16	17	18	16	16	17	17	17	17	17	17	17	17	16
12	18	18	19	18	18	19	19	19	19	19	19	19	18	19	19
13	29	30	30	29	29	29	30	30	29	29	30	30	30	30	30
14	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
15	25	25	25	24	24	24	25	24	24	25	24	24	24	24	24
MD	22	22	22	22	21	21	22	22	21	22	22	22	22	22	22
DP	5	5	5	4	4	4	4	4	4	4	4	4	5	4	4
MAX	30	30	30	29	29	29	30	30	29	29	30	30	30	30	30
MIN	16	16	16	17	16	16	16	16	15	15	17	16	15	17	16

TABELA B7:Valores individuais de PPLATÔ para as técnicas ASP, BS e PZ nos tempos pré-intervenção, durante as manobras, 0 ao 10º, 30º, 60º e 120º minuto após as manobras.

3 4 5 0' 1' 3 7 4 5 0' 1' 23 20 24 24 24 22 22 22 21 20 20 24 24 24 25 22 22 21 20 20 26 27 27 27 20 21 27 32 40 21 21 27 32 40 21 21 27 32 40 21 21 28 20 18 15 15 29 20 21 25 24 26 20 21 25 24 26 20 21 21 21 22 25 25 25 20 20 21 21 21 22 26 26 26 28 24 27 22 20 20 21 21 22 20 22 20 20 23 3 3 4 4 24 26 25 25 26 26 26 28 24 26 27 27 16 28 27 27 16 27 28 28 27 27 28 28 27 27 16 27 27 28 28 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 28 27 27 16 27 27 27 27 27 28 28 27 27 28 28 27 27 28 28 27 27 28 28 27 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28	2 3 4 5 0' 1' 60 33
National Color Nati	60 33
1	72 70 76 75 20 19 20 19 19 19 19 19 18 19 19 19 18 19 19 19 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19
1	29 23 20 24 24 24 24 24 25 24 25 24 24 25 24 24 25 24 24 25 24 25 22 2 2 2
31 25 24 20 24 25 23 24 26 23 22 22 21 20 20 23 24 25 25 25 25 25 25 25	23 22 22 21 20 20 20 20 20 20 20 20 20 20 20 20 20
34	20
34 35 30 20 18 20 19 17 20 19 18 18 18 18 18 19 20 21 17 25 14 27 20 26 25 23 24 27 20 26 26 18 20 21 18 19 11 11 11 11 11 11	18 18 18 18 25 26 26 26 26 26 26 26
17 25 14 27 20 26 25 23 24 27 20 26 26 26 26 26 26 27 32 40 41 41 41 41 41 41 41	20 26 26 26 26 26 26 26 26 27 32 40 21 21 20 22 21<
41 40 42 37 34 36 41 35 42 29 27 32 40 21 11<	29 27 32 40 21 21 22 22 21 22 24 23 24 24 24 24 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 <td< td=""></td<>
1	10
1	19 11 11 11 12 12 13 14 17 17 17 17 17 17 17 17 17 17 17 17 17
27 20 32 18 18 24 25 22 26 19 18 20 18 16 16 16 16 16 16 16 16 16 11 11 16 11 11 16 11 11 16 11 16 11 16 11 16 11 16 11 16 11 16 17 14 13 16 16 17 14 13 16 16 17 14 13 16 17 14 16 17 14 16 17 14 16 17 16 17 16 17 14 17 16 17 14 17 16 17 16 17 14 17 16 17 14 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16<	19
24 63 22 14 15 20 58 42 35 12 17 14 13 15 16 17 18 10 12 17 14 13 16 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 11 16 17 16 16 16 17 16 17 16 16 16 17 16 16 16 17 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17	12 17 14 13 15 16 15 17 16 17 16 17 17 16 17 18 17 19 12 12 19 16 17 18 17 17 17 17 17 17
12 18 10 12 34 35 33 36 32 36 36 36 39 36 39 39 39	12 10 12 9 16 17 18 17 17 17 17 17 17
34 36<	32 36 28 30 28 20 23 28 28 29 28 27 29 29 29 24 24 24 24 24 24 24 24 24 24 24 24 24
13 13 12 11 11 16 11 13 11 15 10 12 12 12 13 14 15 15 17 18 18 18 18 18 18 18	15 10 12 12 12 18 18 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18
1	26 25 24 26 26 27 27 20<
1	2
30 31 28 29 24 29 24 26 25 26 25 24 26 26 25 24 26 26 26 25 24 26<	26 25 24 26 20 21 20<
17 16 16 17 11 19 10 17 14 15 16 17 14 4 4 4 17 16 16 17 11 11 11 11	17 15 16 17 4 4 3 4 4 4 4 4 4 4
70 63 64 69 50 55 81 42 77 64 72 70 76 75 28 29 29 14 11 10 11<	72 70 76 75 28 29 26 28 29 20 20 11 27 31 41 14 14 14 15 16<
14 10 11 11 10 11 10 11	11 10 11 9 15 15 15 14 14 14 15 16
1 S E R R R R R R R R R	TECNICA PEEP-ZEEP (PZ) Sa SERIE Sa SER
1a SERIIE 3a SERIIE <t< th=""><th>3a SERIE 3 4 5 6' 7' 8' 9' 1 2 3 4 5 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 1 25 25 20 20 17 16 16 15 15 15 16 16 16 16 15 15 16</th></t<>	3a SERIE 3 4 5 6' 7' 8' 9' 1 2 3 4 5 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' 1 25 25 20 20 17 16 16 15 15 15 16 16 16 16 15 15 16
2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 1 2 3 4 5 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 1 2 3 4 5 1 1 2 3 4 5 1 2	2 3 4 5 0' 1' 2' 3' 4' 5' 6' 7' 8' 9 25 25 25 26 20 17 16 16 16 15 15 16 16 22 21 20 20 17 16 16 16 15 15 16 16 20 22 20 20 19 21 21 21 21 20 20 19 19 19 19 19 19 19 10 19 10
24 25 27 24 34 21 26 27 26 25 25 25 27 26 27 28<	25 25 25 25 25 25 25 20 17 16 16 16 15 15 15 16 16 15 15 15 16 16 16 16 15 15 16 17 16 16 17 16 16 16 17 16 16 16 16 16 16 16<
30 30 29 28 22 <t>22 22 22 22<!--</td--><td>22 21 21 22 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 10 21 21 20 20 20 20 20 10 21 21 20<</td></t>	22 21 21 22 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 19 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 10 21 21 20 20 20 20 20 10 21 21 20<
31 31 30 31<	31 32 28 28 24 24 25 24 20 31 31 32<
21 20 20 21 20 21 20<	20 22 20 22 18 21 21 19 21 21 21 21 20 19 19 19 19 19 19 19 19 17 21 20 20 19 19 19 17 21 20 20 19 19 19 17 21 21 20 20 19 19 19 17 21 20 20 19 19 17 21 20 20 19 19 17 21 20 20 19 19 17 21 20 20 19 19 17 21 20 20 21 20 20 21 20 20 21 21 20 20 21 21 20 20 21 21 21 21 21 21 21 21 21 21 21 21 22 20 20 21 21<
26 26 <t>26 26 26 26<!--</td--><td>26 24 25 24 21 21 21 21 21 20 19 19 19 19 17 21 21 22 22 22 24 26 27 26 27 27 26 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 27 28 28 28 28 28 28<</td></t>	26 24 25 24 21 21 21 21 21 20 19 19 19 19 17 21 21 22 22 22 24 26 27 26 27 27 26 27 26 27 27 26 27 26 27 27 26 27 27 26 27 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 27 28 28 28 28 28 28<
26 28 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 28 29<	26 26 26 28 24 26 26 27 26 27 27 26 27 27 26 27 27 26 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 28 27 27 29 27 27 29 27 27 28 28 28 28 28 28 28 28 28 28 28 28 29 29 27 28 28 29 29 27 28 28<
24 26 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 26 27 27<	25 24 25 24 25 24 25 22 20 21 15 21 16 16 17 16 16 17 16 16 17 16 16 17 16<
31 29 30 29 30 31 30<	29 30 28 24 25 22 20 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 12 14 15 14 17 16<
25 25<	25 25 26 25 17 16 16 17 16 16 16 16 16 16 16 16 16 16 16 16 16
21 22 23 21 24 23 22 19 22 22 22 22 22 22 22 22 22 23 24 24 24 27 27 26 28 28 28 28 27 27 27 26 28 28 28 27 27 27 28<	28 28 27 27 16 17 16 17 17 14 19 16 16 16 25 26 26 26 15 17 18 17 17 17 17 16 16 16 16 16 22 22 27 25 29 21 25 27 22 26 27 27 22 26 27 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 27 29 29 27 29 29 27 29 29 29 29 29 29 29 29 29 29 29 29 29
27 26 28 27 26 28<	25 25 26 26 15 17 16 17 17 17 16 16 16 16 16 16 16 22 27 25 29 21 25 27 22 26 26 15 17 18 17 17 17 17 17 17 17 17 17 17 17 17 17
25 26 27 27 27 27 27 28 26 28 26 28 26 28 26 28 26 27 27 27 27 28 26 28 22 27 26 28 28 28 24 24 24 28 27 27 28 28 28 24 24 24 17 27 31 31 31 31 30 31 30 31 32 4 4 4	25 25 26 26 4 15 17 18 17 17 17 17 17 17 17 17 17 17 17 17 17
24 27 27 23 27 27 27 28 26 28 22 27 25 29 21 25 29 21 25<	25 27 25 29 21 25 29 21 25 27 22 26 27 27 29 27 28 28 28 28 28 28 28 28 28 28 28 28 28
24 21 21 21 21 22 23 25 25 27 23 25 25 27 23 24 25 25 25 25 25 24 25 28 33 32 <	25 24 24 24 24 12 2 2 1 2 2 2 2 2 2 2 2 2
31 31 31 31 31 31 32 33 33 33 33 33 33 33 33 33 33 33 34 44 44	26 26 25 26 20 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20
26 26 26 26 26 25 26 26 25 26 25 26 25 26 25 26 20 21 3 3 3 3 4 3 3 3 3 3 3 3 3 3 4 4 4	26 26 25 26 20 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20
3 3 3 4 3 3 3 3 3 3 3 3 4 4	23 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 20 21 20 22 12 12 14 15 14 14 16 14 15 15 16
	32 32 32 32 27 29 28 28 26 27 27 29 27 28 20 21 20 22 12 14 15 14 14 16 14 15 15 16
24 24 24 24 24 24 24 24 20 24 22 22 22 22 27 20	20 21 20 22 12 14 15 14 14 16 14 15 15 16
31 31 31 31 34 31 31 30 31 32 32 32 32 27 29	20 21 20 22 12 14 15 14 16 14 15 15 16

				Т	ÉCN	ICA A	ASPI	RAÇ	ÃO (ASP))				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	18	20	20	23	22	21	20	21	21	19	19	19	21	19	19
2	30	20	19	19	19	18	21	19	21	23	19	20	20	20	20
3	25	25	25	24	24	24	24	24	24	24	25	25	25	25	24
4	21	20	20	20	20	21	20	20	20	21	20	20	21	20	21
5	19	22	20	21	21	20	20	22	19	23	20	21	23	22	20
6	25	25	26	26	26	26	26	26	25	26	26	26	26	26	26
7	17	16	16	17	17	17	17	17	17	16	17	17	16	17	17
8	24	25	25	25	25	24	23	24	24	24	24	24	24	24	24
9	17	17	17	17	17	17	17	16	17	17	17	17	17	17	17
10	17	15	15	19	17	16	16	16	14	15	16	16	14	16	16
11	14	15	17	17	16	16	17	17	17	16	16	16	17	17	14
12	17	16	17	17	17	17	17	17	17	17	18	18	17	17	17
13	28	25	27	28	28	28	28	28	29	27	28	27	27	27	27
14	18	17	18	18	18	18	18	18	18	19	18	19	18	18	18
15	23	23	23	23	23	24	24	23	24	22	23	23	24	23	23
MD	21	20	20	21	21	20	21	21	20	21	20	21	21	21	20
DP	5	4	4	4	4	4	4	4	4	4	4	4	4	4	4
MAX	30	25	27	28	28	28	28	28	29	27	28	27	27	27	27
MIN	14	15	15	17	16	16	16	16	14	15	16	16	14	16	14

TABELA B8: Valores individuais de PFI para as técnicas ASP, BS e PZ nos tempos pré-intervenção, durante as manobras, 0 ao 10º, 30º, 60º e 120º minuto após as manobras.

	Ш	120'	5 6	4	2	7	0	0	_	_	_	_											-											_					Ι.			- 1
	Ш			7	ц)	က	9	4	4	4	2	36	45	25	9	8	84 5	2	8	54			120	46	20	42	49	33	28	43	54	45	22	33	43	22	53	77	47	12	1	22
	Ш	90,	47	42	20	33	28	43	28	4	24	4	43	4	21	63	45	2	83	54			,09	4	21	40	22	32	24	4	25	4	22	33	45	43	23	99	46	7	99	22
	Ш	30,	5 4	42	53	39	28	4	54	4	22	42	43	54	49	82	47	2	82	22			30,	39	46	42	22	34	29	44	22	44	22	41	46	42	53	85	47	14	85	22
	Ш	,0 7	20	42	09	26	28	4	47	43	22	42	45	29	21	92	46	7	65	22			10,	42	22	40	22	30	22	4	09	4	22	33	46	4	23	79	47	4	79	22
	Ш	ō ;	1 6	42	09	36	28	45	47	41	21	42	45	45	48	78	47	7	28	51			, O	44	99	41	61	30	28	44	99	43	21	40	46	45	53	79	48	4	79	51
	Ш		51	42	09	30	28	45	46	41	22	42	44	42	49	9/	46	2	92	22			œ	43	22	40	09	34	28	43	24	43	21	41	46	42	52	73	47	12	73	21
	Ш	<u></u>	5 4	42	61	38	09	45	23	4	33	43	4	26	21	72	20	2	75	38			7	4	29	33	62	30	22	42	4	4	22	45	45	45	23	9/	47	13	9/	22
	Ш	6	23 4	4	29	43	29	45	47	4	38	4	4	25	49	74	49	n	74	38			-9	4	61	32	63	30	24	32	25	43	22	37	45	4	25	75	46	4	75	52
	Ш	. 2	54	41	22	43	28	43	28	40	39	42	43	22	52	80	50	Ξ	80	39			5.	45	54	39	22	38	28	42	24	44	21	43	45	47	22	82	48	13	82	21
	Ш	4 5	52	40	28	42	28	44	99	40	28	42	4	22	49	77	49	Ξ	1	28			4	49	23	38	23	39	22	38	99	44	22	42	45	43	52	79	47	13	79	22
	Ш	·ω [25	40	22	4	29	33	09	40	38	43	43	29	48	78	20	Ξ	28	38			က	21	22	45	21	34	28	38	28	43	22	4	46	26	24	84	49	4	84	52
	Ш	7 2	9	39	26	48	09	38	22	40	37	4	4	38	51	98	20	2	98	37			2	28	29	4	62	4	22	46	20	43	22	48	46	06	24	81	23	16	06	22
S)		- €	25	37	22	4	28	37	09	39	37	43	42	40	21	<u>∞</u>	49	7	2	37			-	4	09	4	62	30	26	42	22	45	7	21	46	26	23	82	20	15	82	71
SQUEEZING (BS)		, o	61	41	22	40	29	40	22	36	37	31	22	99	49	64	49	Ξ	99	31	(PZ)		0	48	9	36	47	41	26	45	29	4	21	51	49	09	20	90	51	16	90	21
EEZII	П	2 5	97	96	29	28	74	51	81	117	78	141	83	99	115	91	6 8	70	141	21	ZEEP		2	38	62	26	25	41	33	30	44	37	20	52	45	45	48	87	4	16	87	70
	ш	4	66	82	75	61	74	72	8	123	115	132	91	73	115	82	85	77	132	61	EEP-	ш	4	31	92	25	23	32	38	27	20	37	4	25	46	45	47	78	45	4	78	52
TÉCNICA BAG	a SÉRIE	ω <u>(</u>	101	8	104	53	71	99	77	108	91	138	113	54	102	114	95	-	162	53	IICA F	s SÉR	က	4	64	26	52	39	38	27	49	37	21	52	44	26	47	77	43	15	77	21
CNIC/	š	~ 8	6 6	88	102	26	29	99	26	117	91	125	92	21	104	32	8 8	7	125	21	TÉCN	33	2	30	64	38	26	30	40	53	21	37	20	23	48	45	46	92	4	15	9/	70
1		- 2	99	78	93	48	82	64	9/	104	105	123	82	49	100	83	82	77	123	48			1	39	63	38	48	36	20	46	28	37	20	52	9	28	46	81	45	16	81	20
	П	υ <u>ζ</u>	104	66	87	61	99	62	87	83	98	134	98	89	103	8	91	7	134	61			2	34	62	27	53	42	38	29	22	39	22	49	48	32	48	126	47	25	126	22
	Щ	4 6	103	85	105	74	84	29	92	117	107	103	96	28	94	107	95	70	138	28		u U	4	34	61	26	52	28	39	26	21	39	21	53	47	31	48	96	43	19	96	71
	a SÉRI	ω ,	97	93	107	54	64	64	82	121	94	78	66	09	96	<u>∞</u>	87	8	121	24		a SÉR	က	33	63	23	20	28	38	26	23	36	21	25	4	4	48	94	44	19	94	77
	2	2 5	85	100	110	99	94	77	73	106	78	87	116	51	06	98	06	70	127	21		2	2	4	64	25	49	27	33	29	38	39	42	52	48	33	48	94	44	17	94	25
	Ц	- 5	78	92	105	86	89	11	73	115	88	106	104	26	66	63	1 3	-	115	26			-	38	64	27	48	22	47	42	22	40	7	26	20	30	21	101	4	20	101	71
	Ш	2 2	102	65	104	94	75	64	82	110			105	22	112	64	8 8	3	127	22			2	26	22	27	46	40	4	59	42	40	45	20	4	46	21	87	45	15	87	56
	빌	4 6	96	106	97														`	22		쁘				25													l			
	a SÉR	w 5	9 1	105													93					a SÉRIE	က	59	28	56	46	36	92	78	46	37	22	46	43	33	20	81	43	16	8	22
	-	0 5	105	102	111	81	29	54	78	119	82	119	126	74	92	79	93	77	126	54		_	2	24	22	26	46	31	45	27	54	40	43	22	44	44	20	80	44	14	80	24
	Ц	-															88						-	37	22	27	43	33	49	30	20	38	23	21	49	43	54	88	45	16	88	23
		Pré	63	42	20	40	26	46	47	40	35	40	43	22	21	75	48	=	75	32			Pré	38	28	40	09	30	22	32	26	4	23	37	4	45	49	84	46	15	84	23
		۔ ء	- 0	က	4	2	9	7	00	0	10	1	12	13	4	15	N N	7	MAX	Z			п	_	7	က	4	2	9	7	∞	6	10	7	12	13	14	15	MD	DP	MAX	Z

				Т	ÉCN	ICA A	ASPI	RAÇ	ÃO (ASP))				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	42	42	47	49	50	50	45	47	44	42	37	40	46	41	44
2	61	72	65	61	58	58	61	59	55	55	57	55	56	56	58
3	44	52	53	41	40	40	40	41	42	42	42	42	42	43	44
4	58	74	70	55	60	68	52	60	69	57	59	63	56	59	62
5	31	43	39	47	37	30	33	44	33	45	33	35	41	49	38
6	40	51	54	53	54	54	55	55	56	55	55	56	56	57	58
7	34	38	38	36	36	36	36	39	36	36	35	36	37	36	36
8	44	53	52	53	52	40	40	41	42	41	42	42	43	43	44
9	40	40	40	40	40	40	40	40	40	41	41	40	40	40	40
10	22	23	21	24	22	23	23	23	24	22	22	22	21	22	22
11	44	36	46	45	43	42	43	43	42	42	42	42	45	42	33
12	44	49	47	47	46	45	45	45	45	46	45	46	43	45	45
13	54	41	38	41	48	44	42	40	52	41	43	53	43	43	46
14	47	53	48	54	53	52	53	53	54	51	52	51	52	50	52
15	65	85	79	62	65	84	83	78	84	81	83	81	91	80	87
MD	45	50	49	47	47	47	46	47	48	46	46	47	47	47	47
DP	11	16	14	10	11	15	14	13	15	13	14	14	15	13	15
MAX	65	85	79	62	65	84	83	78	84	81	83	81	91	80	87
MIN	22	23	21	24	22	23	23	23	24	22	22	22	21	22	22

TABELA B9: Valores individuais de PFE para as técnicas ASP, BS e PZ nos tempos pré-intervenção, durante as manobras, 0 ao 10º, 30º, 60º e 120º minuto após as manobras.

HII	ווג	UL	ıı a	э.																	_		_																			
		120'	2 6	3 4	88	4	33	38	29	47	33	28	28	22	32	23	41	9	29	78			120'	4	33	45	9	36	37	4	28	47	7	33	53	23	32	47	40	6	28	72
		,09	37	. 4	38	38	37	47	64	20	28	42	31	99	32	41	41	10	64	28			,09	35	35	39	36	37	32	47	61	46	35	41	31	22	37	49	41	6	61	3
		30,	3.5	42	39	37	36	44	28	43	29	38	30	22	33	46	41	œ	28	59			30,	33	32	41	39	38	36	20	28	44	29	41	30	51	36	54	41	6	28	59
		10'	36	2 4	39	28	37	45	54	43	27	42	30	28	31	40	33	6	28	27			10,	32	31	40	36	34	38	47	62	45	38	41	31	24	37	20	41	6	62	31
		,6 L	37	42	9	38	38	48	26	43	28	42	59	61	32	42	42	6	61	28			О	37	31	40	36	38	37	48	61	45	27	41	59	28	38	47	41	10	61	27
			34	43	40	27	38	49	22	44	31	43	31	61	32	40	40	10	61	27			œ	33	32	39	39	35	36	45	51	45	27	39	30	20	38	34	38	7	51	27
		7.	34 5	. 4	38	4	38	20	28	42	24	43	31	52	31	37	40	6	28	24			7	29	31	4	4	33	37	48	49	45	38	43	31	22	39	46	40	œ	22	53
		.9	3.55	43	38	46	36	49	99	44	23	45	29	29	23	24	41	7	29	23			.0	34	36	4	39	34	42	33	21	41	28	38	32	26	39	20	40	œ	26	78
		5,	35	40	39	44	39	46	29	45	28	41	30	22	32	48	41	6	29	78			5	34	31	39	4	37	36	48	22	44	31	46	30	22	38	53	41	6	22	30
		4 8	3 8	8 4	88	4	33	49	29	49	56	43	30	24	28	47	41	10	29	56			4	38	33	9	88	37	37	42	25	45	27	4	32	49	40	21	40	7	25	22
		33	2 t c	2 4	39	38	36	46	62	47	25	47	30	29	32	40	41	10	62	25			'n	37	38	42	36	36	36	46	28	44	29	43	30	38	33	46	39	7	28	59
		2, 2,	S &	300	25	46	36	47	09	47	34	37	32	43	53	45	41	œ	09	53			2	45	36	46	93	33	37	23	20	4	53	42	33	24	36	20	42	œ	24	53
(BS)		- - 5	37	38	37	40	35	48	09	47	28	38	31	26	31	46	42	10	09	78			-	32	32	48	38	38	37	23	24	47	24	25	30	4	38	54	41	10	24	24
NG (E		0,	δ0	38	36	36	34	45	52	44	23	35	24	53	26	40	40	12	89	23	(PZ)		0	4	36	41	34	4	33	21	29	48	20	46	26	42	39	26	41	12	29	20
UEEZI		5	100	33	74	92	28	38	119	70	61	69	26	90	73	87	74	23	119	33	-ZEEF		2	83	54	64	09	52	22	20	75	72	29	47	20	73	09	74	64	7	83	47
ဖြွ	빌	4	6	28	82	22	28	51	90	78	65	73	99	91	77	64	20	18	93	28	PEEP	빌	4	30	34	19	22	32	19	27	36	44	16	24	28	46	20	40	31	7	54	16
A BAG	a SER	3	74	32	78	54	29	52	87	70	45	79	61	93	74	86	22	34	180	32	NICA	a SÉR	က	29	32	22	23	23	20	29	49	45	23	28	28	29	20	43	33	13	28	20
TÉCNICA	ñ	2	00	36	8 8	54	26	37	83	69	61	72	99	92	87	72	29	16	95	36	TÉC	Ö	7	27	31	20	56	33	22	31	45	38	21	22	22	25	19	38	30	10	22	19
F		- 8	9 9	32	70	43	64	72	22	99	77	64	62	110	80	96	20	20	110	32			~	32	37	29	26	23	18	25	44	38	16	09	16	32	19	42	30	12	09	16
		5	7 2	29	82	20	9	54	106	9/	62	20	22	89	74	80	29	19	106	29			2	92	28	92	43	24	25	22	64	9/	69	101	69	40	63	63	64	16	101	40
	SIE		9 5																			SE	4	32	8	9	23	33	51	31	54	4	22	20	30	8	21	33	33	10	24	9
	a SER	3 3	, rc	3.5	85	63	70	54	106	80	9	83	92	93	75	69	73	19	106	31		a SÉR	က	26	30	18	29	21	20	32	54	44	26	54	26	35	21	40	32	12	54	18
	.,		3 6																				2	26	33	21	27	30	26	7	36	4	16	26	27	33	22	26	29	10	26	16
		_	5.1						÷		70	9/				_							-	47		18			_									-			52	
			55 9						`						74				_															_							102	
	SERIE	4 6	32																			RE																			28	
	1a SĒ	3													69							1a SÉRI																			53	
		2 5	101		•				•										•																						59	
		\C	44												89	_							⊢	_	_		_	_	_	_	_	_	_	_	_	_	_	-			20	
		Pre	57												1 28	_							╙															_			X 29	_
		י ם	- ^	1 W	4	2	9	7	00	6	10	#	12	13	14	15	M	占	MA	Ē			_	~	2	က	4	2	9	7	00	0	10	#	12	13	14	15	M	Б	MAX	Ē

				Т	ÉCN	ICA A	ASPI	RAÇ	ÃO (ASP))				
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	36	36	36	52	48	49	43	46	42	37	37	37	42	37	40
2	60	37	36	33	30	38	39	35	35	41	30	35	33	34	30
3	42	42	42	38	38	38	41	40	42	41	42	43	42	42	43
4	39	37	34	36	36	37	37	37	37	38	37	37	37	38	40
5	33	43	39	41	40	34	35	43	39	49	39	37	42	46	41
6	28	35	35	35	34	35	36	36	34	35	36	37	36	35	35
7	30	39	34	35	35	37	37	36	36	33	32	36	32	36	36
8	42	42	44	42	45	39	40	39	42	40	42	43	42	42	43
9	44	42	42	42	42	44	43	43	43	38	46	45	44	42	43
10	32	28	28	33	36	33	35	33	26	30	29	25	22	29	28
11	29	37	49	49	40	42	43	46	42	40	39	40	46	44	30
12	31	24	31	32	32	31	32	31	32	32	31	31	31	31	32
13	46	52	54	52	57	55	56	56	58	53	55	54	54	50	58
14	33	26	33	30	28	32	30	28	33	28	26	29	28	36	33
15	40	41	37	41	36	39	44	48	40	36	44	42	53	41	49
MD	38	37	38	39	38	39	39	40	39	38	38	38	39	39	39
DP	8	7	7	7	7	6	6	7	7	7	8	7	9	6	8
MAX	60	52	54	52	57	55	56	56	58	53	55	54	54	50	58
MIN	28	24	28	30	28	31	30	28	26	28	26	25	22	29	28

TABELA B10: Valores individuais de Rinsp para as técnicas ASP, BS e PZ nos tempos Pré, 0 ao $10^{\rm o}$, $30^{\rm o}$, $60^{\rm o}$ e $120^{\rm o}$ minuto.

					TĆ.		400	D A O Â	0 /46	\D\					
	1							RAÇÂ							
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	2,9	3,8	2,4								3	3,1		3	4,4
2	7,8	4,4		3,6				8,4	6,6	5,9	5,1	6,8	8,6	9	9,8
3	14,3	14,2	12,4	10,8	13,1	14,5	17,5	15	15,4	15,6	18,1	14,1	15,5	14,6	12,6
4	6,3	9,7	5,4	6,1	6,6	4,7	8,1	7,8	4,8	6,6	6,5	7	7,9	4,8	5,6
5	11,9	13,8	8,7	7,7	4	10,6	9,7	9,5	11,4	7,9	10,9	9,3	10	10,9	9,7
6	17	11,9	11,8	12,7	10,9	10,4	10,2	10,5	10,3	11	9,7	8,5	9,4	9,2	9,2
7	5,3	4,8	3,8	6,1	7	7,5	4,7	4,3	7,2	4,2	3,5	3,8	4,1	5,6	7,6
8	5,3	5,8	5,8	6,9	4,9	5,7	6	5,7	6,4	4,9	6,6	8,3	7,1	6,2	5,8
9	4	3,7	3,8	4,4	4,7	4,5	4,2	4,6	6,9	6,3	4,3	4,6	3,9	4,7	4,6
10	8	8									2,6	4	4	4	4
11	5,8	7	4,1	4,3	4,2	4,5	4,7	4,5	4,8	4,8	4	3,5	5,6	4,5	10,5
12	8,8	10,8	8,6	8,2	8,2	8,1	8	8,4	8,5	8,6	3,3	8,2	8,3	8	8,6
13	16	18	10,5	13,6	16,9	10,7	1,6	12	1,6	12,1	11,9	12,2	9,4	13,3	13,5
14	5,2	10,9	5,6	5	5	5	5	5,1	5	5,3	4,4	5,1	4,5	4,9	4,9
15	8,4	10,4	9,8	9,1	9,6	7,2	6,4	5	7,6	6,7	5,2	6,8	4	5,3	4,8
MD	8	9	7	8	8	8	7	8	7	8	7	7	7	7	8
DP	4,39	4,29	3,34	3,21	4,03	3,19	4,07	3,33	3,47	3,36	4,30	3,21	3,29	3,52	3,11
MAX	17	18	12	14	17	15	18	15	15	16	18	14	16	15	14
MIN	3	4	2	4	4	5	2	4	2	4	3	3	4	3	4

					TÉCN	NICA E	BAG S	QUEE	ZING	(BS)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	5,4	6,3	5,8		2,1			4,8				3,5	3,3	2,2	1,9
2	10,5	11,3	8,8	11,2	12,5	10,5	9,7	11,1	11,7	11,9	11,1	10,9	13	10,9	12,2
3	12,9	15	13,6	13,2	12,6	12,3	11,5	11,8	11,9	11,6	11,9	11,4	11,2	11,6	11,4
4	6,6	10,5	7,5	9,4	6	8,1	8,6	7,5	8,4	7,4	8,1	8,1	8,7	9,2	9,5
5	10	9,4	9,6	7,2	8,6	7,2	8,9	9,2	10,3	12,5	11,8	9	9,6	9,2	9
6	10,1	13	12,1	9,4	9,6	9,6	9,1	10,2	9,3	9,3	9,1	9,9	9,5	9,4	9,3
7	8,9	13,1	12,1	11,7	12,4	10,2	9,8	10,3	10	10,3	10,4	10	10,3	7,7	11,9
8	4,8	5,8	6,9	6,1	6,4	6,2	8	7	8,7	7,5	8,7	8,4	7,6	10,4	7,2
9	4,5	4,8	7,5	3,1	3,5	4	5	3,9	3,9	4,8	4,3	4,5	4,5	5,5	4,3
10	2	4							4,7	4,5		2	7	4,3	5
11	8,2	11,5	4,4	4,4	4,4	3,7	5,1	4,8	4,9	5,2	5,5	5	6,4	4	6,3
12	9,8	13,5	7,9	7,9	8	8,3	8,4	8,3	8,5	8,4	8,2	8,5	8,5	4,3	8,2
13	13,1	11,2	9,7	17,2	12,1	10,8	12,3	14,8	13,1	13,3	15	13,7	10,8	10,8	13
14	5	8,4	6,1	6	5,5	5,5	4,6	10,8	4	7,1	4,7	5	4,6	5	3,9
15	5,2	10	4,6	9,3	6,4	5,7	4,4	4,5	8,5	6,1	8,7	7,4	4,8	6,5	3,9
MD	8	10	8	9	8	8	8	9	8	9	9	8	8	7	8
DP	3,30	3,36	2,83	3,82	3,55	2,73	2,60	3,25	3,01	2,97	3,07	3,25	2,85	3,04	3,49
MAX	13	15	14	17	13	12	12	15	13	13	15	14	13	12	13
MIN	2	4	4	3	2	4	4	4	4	5	4	2	3	2	2

					TÉ	ÉCNIC	A PE	P-ZE	EP (P	Z)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	4,1												3	3,3	2,7
2	10,5	6,8	5,1	4,5	7,5	5,3	4,1	4,3	5,4	7,1	7,8	8,1	9,6	10,9	7,8
3	17,2	23,9	16,9	17	14,6	14,4	12,9	12,5	13,3	13	12,7	13	12,2	11	10,8
4	5,6	12,6	8,6	6,9	6,3	7,6	7,8	6,2	5,4	5,4	7,1	8	6,5	9,5	8,2
5	11,4	9,8	9,5	11,2	9,9	11,5	11	10,8	9,2	11,7	11,7	9,3	9,4	11	10,7
6	9	12,9	9,7	9,9	11,8	9,4	9,1	10,2	10,3	9,5	9,8	11	9	10,6	9,5
7	9	15,5	14,3	13,1	13,3	11,5	11,6	11	10,8	10,7	10,9	10,7	10,5	10,4	10,3
8	5,6	7,9	5,1	6,4	6,4	6,2	6,5	7,1	6,7	5,9	5,7	7,2	5,6	5,9	6,5
9	4	3,5	3,9	4	4,2	4,9	4	4,1	4,7	4,8	4,9	5	4,9	4,8	4,6
10	6	7	7,1	6,2								3,6	7	6	4
11	7,9	5	4,9	5,4	3,8	4	4,3	3,7	3,8	4	4,8	4,6	5,6	4,7	5,7
12	8,5	10,6	8,4	8,1	8,6	8,1	8	8,2	8,4	8,4	8,1	8,3	8,1	8,8	8,6
13	10,4	14	18,7	10,7	14,9	11,1	15,4	11,5	10,6	12,2	11,2	13,9	9,7	8,6	14,5
14	4,7	4,6	4,7	4,6	4,6	4,7	4,4	7,1	7	7,1	7,4	7,2	7,2	7,3	7
15	2,8	2,9	4,7	6	5	6,6	8,2	5,9	4,1	7,6	4	6,1	6	9	8,4
MD	8	10	9	8	9	8	8	8	8	8	8	8	8	8	8
DP	3,73	5,72	4,79	3,78	4,00	3,24	3,67	3,04	3,00	2,95	2,88	3,06	2,45	2,61	3,04
MAX	17	24	19	17	15	14	15	13	13	13	13	14	12	11	15
MIN	3	3	4	4	4	4	4	4	4	4	4	4	3	3	3

TABELA B11: Valores individuais de Rexp para as técnicas ASP, BS e PZ nos tempos Pré, 0 ao $10^{\rm o}$, $30^{\rm o}$, $60^{\rm o}$ e $120^{\rm o}$ minuto.

					TÉ	CNICA	ASP	RAÇÂ	O (AS	SP)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	2,9	4,1	2,5			2,7	3,7	2,9	3,2	3,4	3	3,1	4,6	3,1	4,4
2	7,9	4,9		3,8	6,1	6,6	6,4	8,5	6,7	6,1	5,2	6,9	8,8	9	9,9
3	14,3	16,4	14,1	13,1	13,1	14,7	17,7	15	15,4	15,7	18,1	14,1	15,7	14,7	12,7
4	6,5	11,9	5,6	6,2	6,7	4,8	8,2	7,9	5	6,7	6,7	7,3	8	4,8	5,8
5	12	13,5	8,7	7,9	10,1	10,9	9,7	10,5	11,5	8,4	11	9,7	10	11	9,7
6	17,1	12	11,9	12,8	10,9	10,5	10,3	10,6	10,3	11,1	9,6	8,9	9,6	9,3	9,2
7	5,3	4,9	3,8	6,3	7,2	7,6	4,7	4,4	7,5	4,2	3,5	3,8	4,1	6,8	7,7
8	5,3	5,8	5,8	7,1	5,1	5,9	6,2	5,8	6,6	4,9	6,6	8,5	7,4	6,3	5,9
9	4	3,7	3,8	4,4	4,7	4,6	4,3	4,7	4,9	4,3	4,4	4,7	4	4,8	4,6
10	8	8	4,2	7,5	7,8	8,6	6,3	5,9	5,2	5,8	8,3	6	6	7	11
11	5,8	7,1	4,2	4,3	4,2	4,5	4,7	4,6	4,8	4,9	4	3,5	5,8	4,5	10,5
12	8,9	10,9	8,7	8	8,3	8,1	8,1	8,5	8,6	8,6	8,3	8,2	8,4	8	8,6
13	16	18,2	10,9	13,7	17,7	10,8	10,8	12	11,7	12,3	12,3	12,2	9,9	13,7	13,5
14	5,2	11,1	5,6	5	5	5	5	5,1	5	5,4	4,5	5,2	4,5	4,9	4,6
15	8,5	11,1	9,8	9,5	9,7	7,3	8,2	5,3	7,6	6,8	5,5	7	4,2	5,4	5,1
MD	9	10	7	8	8	8	8	7	8	7	7	7	7	8	8
DP	4,40	4,51	3,56	3,33	3,75	3,19	3,58	3,38	3,35	3,44	4,06	3,14	3,20	3,43	3,04
MAX	17	18	14	14	18	15	18	15	15	16	18	14	16	15	14
MIN	3	4	3	4	4	3	4	3	3	3	3	3	4	3	4

					TÉCN	NICA E	BAG S	QUEE	ZING	(BS)					
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	5,4	6,3	13,8		2,1	3,2	5,8	4,9	4,8	5,5	4,2	3,6	3,4	2,3	1,9
2	10,7	11,6	9,5	11,4	12,9	10,8	9,7	11,2	12	12,1	11,5	11,2	13,2	11	12,4
3	12,9	15,1	13,6	13,3	12,7	12,4	11,6	11,8	12	11,6	12	11,5	11,3	11,7	11,1
4	6,7	10,8	7,6	9,5	6	8,2	8,8	7,6	8,5	7,5	8,2	8,2	8,9	9,2	9,4
5	10,2	9,5	9,9	7,5	8,8	7,4	9,4	9,4	10,3	12,8	11,9	9,6	9,8	9,5	9,1
6	10,2	13,2	12,1	9,5	9,7	9,8	9,2	10,2	9,4	9,5	9,2	10	9,6	7,8	9,4
7	9,1	13,3	12,2	11,9	12,4	10,5	9,9	10,6	10,1	10,6	10,6	10,2	10,6	10,5	12,2
8	4,9	6	7	6,1	6,5	6,5	8,1	7,1	8,9	7,5	8,9	8,5	7,6	5,9	7,2
9	4,6	4,8	3,5	3,2	3,5	4	5	3,9	3,9	4,8	6,3	4,5	4,5	4,3	4,3
10	8	4	4,3	6,8	3,7			4,1	6,9	10	4,8	8	7	4	5
11	8,2	11,9	4,8	4,4	4,4	3,7	5,1	4,8	4,9	5,2	6,5	5,1	6,5	4,4	6,3
12	9,8	13,9	8,8	8	8,1	8,3	8,4	8,4	8,6	8,4	8,3	8,5	8,6	8,3	8,3
13	13,4	11,3	9,7	17,5	12,3	10,9	12,5	14,9	13,5	14,1	15	13,8	11,1	11,2	13,2
14	5	8,5	6,2	6,1	5,6	5,5	4,7	11,5	4	7,1	4,7	5	4,6	5	4
15	5,3	1,2	4,7	10,2	6,4	5,8	4,9	5	8,7	6,3	8,8	7,5	5	6,6	4
MD	8	9	9	9	8	8	8	8	8	9	9	8	8	7	8
DP	2,92	4,13	3,43	3,79	3,65	2,97	2,58	3,36	3,01	2,93	3,11	2,87	2,91	3,03	3,53
MAX	13	15	14	18	13	12	13	15	14	14	15	14	13	12	13
MIN	5	1	4	3	2	3	5	4	4	5	4	4	3	2	2

	TÉCNICA PEEP-ZEEP (PZ)														
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	4,2	4,3	3		1,7	3	3,9	3,8	4,1	3,1	4,6	3,3	3,1	3,3	2,7
2	10,6	7,3	5,5	4,9	7,8	5,5	4,6	4,6	5,8	7,3	7,9	8,3	9,9	11	7,8
3	17,8	24	16,8	17,2	14,7	14,4	13,1	12,6	13,3	13,1	12,7	13	12,2	11,7	10,8
4	5,7	12,9	8,7	7,4	6,3	7,9	8,8	6,5	6,2	5,7	7,4	8,1	6,5	9,5	8,3
5	11,5	10,4	9,7	11,3	10	11,7	11	10,8	9,3	11,8	12,2	9,3	9,4	11,1	10,9
6	9	12,9	9,8	10	11,9	9,6	9,3	10,2	10,4	9,6	10	11,1	9,1	10,6	9,6
7	9,1	15,7	14,4	13,2	13,5	11,7	11,8	11,2	11	11,3	11	10,8	10,8	10,5	10,4
8	5,7	8	5,2	6,4	6,6	6,3	6,6	7,3	6,7	6	5,9	7,5	5,7	6	6,5
9	4	3,5	3,9	4,1	4,2	5	4	4,1	4,8	4,8	4,8	5	5	4,8	4,7
10	6	7	7,3	16	8,8	8,3	5,7	6,1	6,6	10,2	14,1	6	7	6	7
11	7,9	5,1	4,9	5,5	3,8	4	4,3	3,7	3,8	4	4,8	4,6	5,6	4,8	5,7
12	8,5	10,7	8,5	8,1	8,7	8,2	8,1	8,3	8,5	8,5	8,2	8,3	8,1	8,8	8,6
13	10,4	13,7	18,4	11,3	15	11,2	15,4	11,6	10,9	12,6	11,5	14,1	10,1	9,2	14,9
14	4,7	4,7	4,7	4,6	4,7	4,7	4,4	7,1	7	7,1	7,4	7,3	7,3	7,3	7,1
15	2,9	3,3	5,1	6,1	5,1	6,8	9,2	6,6	4,1	4,2	4,1	6,2	6,3	9,1	8,8
MD	8	10	8	9	8	8	8	8	8	8	8	8	8	8	8
DP	3,83	5,66	4,75	4,26	4,14	3,30	3,65	3,01	2,93	3,33	3,29	3,07	2,48	2,69	2,94
MAX	18	24	18	17	15	14	15	13	13	13	14	14	12	12	15
MIN	3	3	3	4	2	3	4	4	4	3	4	3	3	3	3

TABELA B12: Valores individuais de Cst para as técnicas ASP, BS e PZ nos tempos Pré, 0 ao 10° , 30° , 60° e 120° minuto.

-	TÉCNICA ASPIRAÇÃO (ASP)														
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	40	26	31	34	34	38	33	36	35	38	36	41	36	42	43
2	27	35	38	38	37	41	32	36	27	23	39	32	38	39	39
3	47	40	46	49	47	46	45	45	46	47	43	43	44	44	52
4	32	35	33	37	35	37	41	42	42	41	40	44	41	41	22
5	43	37	38	44	44	26	49	28	46	26	35	28	20	42	39
6	33	49	51	46	49	48	49	49	51	48	49	49	46	46	45
7	40	54	49	45	41	41	47	45	44	43	36	52	53	38	39
8	44	35	33	30	32	40	42	40	40	41	41	40	41	41	45
9	63	59	62	62	62	62	63	70	63	63	63	63	61	63	64
10	44	53	54	38	44	50	49	50	62	55	50	49	61	49	50
11	142	30	37	34	32	28	28	30	28	26	24	25	33	29	32
12	78	43	33	33	33	33	35	34	33	33	33	32	34	35	32
13	26	22	19	19	27	21	19	23	22	23	18	23	18	21	25
14	69	73	61	72	69	69	69	69	67	69	66	68	68	70	69
15	39	62	40	56	47	58	86	29	57	56	65	57	64	56	56
MD	51	43	42	42	42	42	46	42	44	42	42	43	44	44	43
DP	29	14	12	13	12	13	17	14	14	14	14	14	15	12	13
MAX	142	73	62	72	69	69	86	70	67	69	66	68	68	70	69
MIN	26	22	19	19	27	21	19	23	22	23	18	23	18	21	22

TÉCNICA BAG SQUEEZING (BS)															
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	55	73	51	70	52	57	56	49	35	54	29	48	34	38	72
2	28	44	44	44	46	46	47	45	55	48	42	52	49	46	47
3	43	37	37	39	40	40	38	40	40	38	40	40	40	38	45
4	42	37	35	36	36	38	41	40	40	42	40	39	44	42	45
5	47	46	34	52	33	33	39	35	33	56	49	34	44	38	43
6	43	50	40	44	44	45	45	45	43	44	44	46	39	43	45
7	38	39	38	25	41	40	32	36	36	36	36	37	36	38	37
8	45	38	39	45	42	37	40	45	37	43	38	42	37	41	39
9	78	70	59	41	59	59	65	63	64	63	62	62	62	70	69
10	61	52	53	44	70	61	63	61	62	44	44	45	45	31	33
11	94	67	93	105	84	91	75	85	74	64	76	76	74	78	129
12	97	119	78	71	79	79	78	78	77	75	76	75	76	75	78
13	18	30	20	27	27	26	27	25	26	15	26	23	19	19	23
14	80	55	66	74	73	71	79	70	72	84	72	72	72	74	63
15	52	49	64	66	59	49	46	35	43	58	53	45	73	51	54
MD	55	54	50	52	52	52	52	50	49	51	48	49	50	48	55
DP	23	22	19	21	18	18	17	17	17	17	16	16	18	18	25
MAX	97	119	93	105	84	91	79	85	77	84	76	76	76	78	129
MIN	18	30	20	25	27	26	27	25	26	15	26	23	19	19	23

	TÉCNICA PEEP-ZEEP (PZ)														
n	Pré	0'	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'	30'	60'	120'
1	40	37	32	69	65	49	50	53	40	55	52	55	55	37	40
2	37	29	34	37	33	30	33	35	44	35	40	35	34	35	41
3	45	38	37	39	40	41	42	33	42	39	40	40	42	40	49
4	31	45	33	36	40	36	35	37	34	37	38	40	36	40	43
5	31	39	31	35	43	52	51	38	37	59	25	39	40	35	59
6	49	51	46	48	45	47	45	43	48	45	44	51	50	48	50
7	31	38	40	38	40	40	36	45	37	39	40	36	39	38	39
8	39	33	36	37	39	39	40	40	34	34	37	37	33	39	33
9	64	83	88	84	74	86	86	83	84	82	84	72	72	72	76
10	55	80	60	54	61	61	44	60	37	47	49	35	49	44	72
11	273	89	89	79	66	74	74	61	93	78	72	70	82	76	72
12	87	137	79	73	82	81	80	79	79	79	78	79	79	79	78
13	23	55	38	19	46	22	26	19	19	21	21	21	18	19	35
14	80	77	88	84	83	83	86	73	70	70	74	67	67	67	75
15	57	62	52	53	55	50	61	44	43	51	46	47	57	57	51
MD	49	60	52	52	54	53	53	49	49	51	49	48	50	48	54
DP	19	29	22	21	17	20	20	18	22	19	19	17	18	18	16
MAX	87	137	89	84	83	86	86	83	93	82	84	79	82	79	78
MIN	23	29	31	19	33	22	26	19	19	21	21	21	18	19	33

TABELA B13: Valores individuais do peso úmido do muco brônquico (em gramas) coletado nas técnicas ASP, BS, PZ e seqüencialmente.

n	T0	BS	PZ	ASP
1	3,70	2,63	1,30	1,89
2	2,42	1,16	0,98	0,64
3	0,23	0,03	0,40	0,47
4	1,23	1,26	0,12	1,26
5	0,93	0,33	0,02	0,69
6	1,21	0,15	0,15	0,09
7	3,56	0,02	0,11	0,44
8	0,94	0,37	0,47	0,70
9	1,38	0,01	0,81	0,17
10	13,52	2,46	0,25	0,42
11	4,68	1,10	0,68	0,50
12	3,68	0,80	0,62	0,64
13	1,00	0,29	0,13	0,36
14	12,57	4,62	1,93	4,10
15	3,09	1,16	0,09	1,35
MD	3,61	1,09	0,54	0,91
DP	4,06	1,28	0,54	1,00
MAX	13,52	4,62	1,93	4,10
MIN	0,23	0,01	0,02	0,09

n	T0	1ª TÉCNICA	2ª TÉCNICA	3ª TÉCNICA
1	3,70	2,63	1,30	1,89
2	2,42	1,16	0,98	0,64
3	0,23	0,40	0,03	0,47
4	1,23	1,26	0,12	1,26
5	0,93	0,69	0,02	0,33
6	1,21	0,15	0,09	0,15
7	3,56	0,11	0,02	0,44
8	0,94	0,47	0,37	0,70
9	1,38	0,17	0,01	0,81
10	13,52	2,46	0,25	0,42
11	4,68	1,10	0,50	0,68
12	3,68	0,80	0,62	0,64
13	1,00	0,36	0,13	0,29
14	12,57	4,10	4,62	1,93
15	3,09	1,16	1,35	0,09
MD	3,61	1,13	0,69	0,71
DP	4,06	1,12	1,18	0,56
MAX	13,52	4,10	4,62	1,93
MIN	0,23	0,11	0,01	0,09

TABELA B14: Valores individuais da medida do ângulo de adesividade (em graus) do muco brônquico coletado nas técnicas ASP, BS, PZ e seqüencialmente.

n	T0	BS	PZ	ASP
1	17	22	20	20
2	20	21	22	22
3	24	28	29	24
4	12	25	22	27
5	22	26	24	25
6	20	22	22	23
7	19	23	23	23
8	13	17	16	14
9	24	28	19	34
10	18	22	33	22
11	16	21	22	24
12	18	22	29	26
13	16	22	24	20
14	18	26	25	21
15	14	22	20	16
MD	18	23	23	23
DP	4	3	4	5
MAX	24	28	33	34
MIN	12	17	16	14

n	T0	1ª TÉCNICA	2ª TÉCNICA	3ª TÉCNICA
1	17	22	20	20
2	20	21	22	22
3	24	29	28	24
4	12	27	22	25
5	22	25	24	26
6	20	22	23	22
7	19	23	23	23
8	13	16	17	14
9	24	34	18	19
10	18	22	33	22
11	16	21	24	22
12	18	22	29	26
13	16	20	24	22
14	18	21	26	25
15	14	22	16	20
MD	18	23	23	22
DP	4	4	5	3
MAX	24	34	33	26
MIN	12	16	16	14

TABELA B16: Valores individuais da velocidade relativa do transporte pelo palato de rã do muco brônquico coletado nas técnicas ASP, BS, PZ e seqüencialmente.

n	T0	BS	PZ	ASP
1	0,85	0,36	0,40	0,69
2	0,86	0,67	0,77	0,76
3	0,99	0,40	0,77	0,64
4	0,76	0,55	0,80	0,80
5	0,45	0,47	0,62	0,70
6	1,10	0,99	0,58	0,91
7	0,91	0,58	0,74	0,37
8	1,04	0,85	1,12	1,23
9	1,03	0,65	1,02	0,66
10	0,99	1,29	1,37	1,39
11	1,05	0,88	0,99	0,94
12	0,99	0,61	0,30	0,71
13	1,19	0,98	0,95	1,55
14	1,08	0,90	0,54	0,94
15	0,88	0,65	0,71	0,79
MD	0,94	0,72	0,78	0,87
DP	0,18	0,25	0,28	0,31
MAX	1,19	1,29	1,37	1,55
MIN	0,45	0,36	0,30	0,37

n	T0	1ª TÉCNICA	2ª TÉCNICA	3ª TÉCNICA
1	0,85	0,36	0,40	0,69
2	0,86	0,67	0,77	0,76
3	0,99	0,77	0,40	0,64
4	0,76	0,80	0,80	0,55
5	0,45	0,70	0,62	0,47
6	1,10	0,58	0,91	0,99
7	0,91	0,74	0,58	0,37
8	1,04	1,12	0,85	1,23
9	1,03	0,66	0,65	1,02
10	0,99	1,29	1,37	1,39
11	1,05	0,88	0,94	0,99
12	0,99	0,61	0,30	0,71
13	1,19	1,55	0,95	0,98
14	1,08	0,94	0,90	0,54
15	0,88	0,65	0,79	0,71
MD	0,94	0,82	0,75	0,80
DP	0,18	0,30	0,27	0,29
MAX	1,19	1,55	1,37	1,39
MIN	0,45	0,36	0,30	0,37

TABELA B17: Valores individuais do deslocamento do muco brônquico (em mm) avaliado pela máquina simuladora da tosse do muco brônquico coletado nas

n	T0	ASP	BS	PZ
	38	42	28	14
15	40	40	24	14
	44	39	26	14
MD	55,93	32,53	28,07	24,69
DP	26,53	13,23	15,13	10,66
MAX	108	65	70	48
MIN	21	7	7	2

n	T0	1ª TÉCNICA	2ª TÉCNICA	3ª TÉCNICA
	60	46	46	65
1		70	41	59
		41		
	57	25	38	42
2	33	21	32	20
	32	24	27	20
	25	24	9	25
3		28	9	
			11	
	30	27	12	24
4	37	26	13	23
	38	29		23
	21	26	2	14
5	25	24	2	9
	23	30		11
	35	14	10	21
6	24	31	10	18
	44			
	62	24	14	7
7	39	23	7	
	41	16	26	41
8	40	14	22	40
	42	12	31	38
	60	20	14	34
9	45	11	17	30
	38		11	32
	106	54	20	30
10	96	64	18	28
	96	43	25	26
	58	42	38	34
11	55	40	32	48
	96	42	28	30
	79	26	27	32
12	93	16	26	24
	108	25	32	28
	57	48	36	38
13	56	42	26	36
	82	46	32	28
	98	50	42	24
14	92	47	48	20
	92	46	44	28

n	T0	1ª TÉCNICA	2ª TÉCNICA	3ª TÉCNICA
	38	28	42	14
15	40	24	40	14
	44	26	39	14
MD	55,93	32,07	24,98	28,00
DP	26,53	14,05	13,14	12,51
MAX	108	70	48	65
MIN	21	11	2	7

TABELA B18: Seqüência individual aleatória de aplicação das técnicas ASP, BS, PZ.

n		Técnicas					
1	T0	BAG-SQUEEZING	PEEP-ZEEP	ASPIRAÇÃO			
2	T0	BAG-SQUEEZING	PEEP-ZEEP	ASPIRAÇÃO			
3	T0	PEEP-ZEEP	BAG-SQUEEZING	ASPIRAÇÃO			
4	T0	ASPIRAÇÃO	PEEP-ZEEP	BAG-SQUEEZING			
5	T0	ASPIRAÇÃO	PEEP-ZEEP	BAG-SQUEEZING			
6	T0	PEEP-ZEEP	ASPIRAÇÃO	BAG-SQUEEZING			
7	T0	PEEP-ZEEP	BAG-SQUEEZING	ASPIRAÇÃO			
8	T0	PEEP-ZEEP	BAG-SQUEEZING	ASPIRAÇÃO			
9	T0	ASPIRAÇÃO	BAG-SQUEEZING	PEEP-ZEEP			
10	T0	BAG-SQUEEZING	PEEP-ZEEP	ASPIRAÇÃO			
11	T0	BAG-SQUEEZING	ASPIRAÇÃO	PEEP-ZEEP			
12	T0	BAG-SQUEEZING	PEEP-ZEEP	ASPIRAÇÃO			
13	T0	ASPIRAÇÃO	PEEP-ZEEP	BAG-SQUEEZING			
14	T0	ASPIRAÇÃO	BAG-SQUEEZING	PEEP-ZEEP			
15	T0	BAG-SQUEEZING	ASPIRAÇÃO	PEEP-ZEEP			

8. Referências Bibliográficas

Ackerman, MH. The use of bolus normal saline instillation in artificial airways. Is it useful or necessary? *Heart & Lung*, 1985; 14(5): 505-6.

Almgrem B, Wickerts C, Heinonen E, Hogman M. Side effects of endotraqueal suction in pressure and volume-controlled ventilation. *Chest.* 2004;125(3):1077-80.

Anning L, Paratz J, Wong WP, Wilson K. Effect of manual hyperinflation on haemodynamics in an animal model. *Physiother Res Int.* 2003;8(3):155-63.

Auler Jr JOC, Carmona MJ, Barbas CV, Saldiva PHN, Malbouisson LMS. The effects of positive end-expiratory pressure on respiratory system mechanics and hemodynamics in postoperative cardiac surgery patients. *Braz J Med Biol Res.* 2000;33(1):31-42.

Bach JR. Mechanical insufflation-exsufflation: comparision of peak expiratory flows with manually assisted and unassisted coughing techniques. *Chest.* 1993;104(5):1553-62.

Barach AL, Beck GJ. Exsufflation with negative pressure; physiologic and clinical studies in poliomyelitis, bronchial asthma, pulmonary emphysema, and bronchiectasis. *AMA Arch Intern Med.* 1954; 93(6):825-41.

Bendixen HH, Hedley-Whyte J, Laver MB Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. A concept of atelectasis. *N Engl J Med.* 1963;269:991-6.

Berney S, Denehy L. A comparison of the effects of manual and ventilator hyperinflation on static lung compliance and sputum production in intubated and ventilated intensive care patients. *Physiother Res Int.* 2002;7(2):100-8.

Berney S; Denehy L, Pretto, J. Head-down tilt and manual hyperinflation enhance sputum clearance in patients who are intubated and ventilated. *Austr J Physiotherapy*. 2004;50:9-14.

Bostick J, Wendelgass ST. Normal saline instillation as part of the suctioning procedure: Effects on PaO₂ and amount of secretions. Heart & Lung. 1987;16(5):532-7.

Brandstater B, Muallem M. Atelectasis following tracheal suction in infants. *Anesthesiology*. 1969;31(5):468-73.

Braga PC. Methods for investigation of mucus: multidisciplinary approach. In: Allegra L, Braga PC. *Bronchial mucology and related diseases*. New York: Raven Press; 1990. p.13-26

Branson RD, Campbell RS, Chatburn RL, Covington J. AARC GUIDELINE Endotracheal suctioning of mechanically ventilated adults and children with artificial airways. *Respir. Care.* 1993;38:500-4.

Branson RD. Secretion management in the mechanically ventilated patient. *Respir Care*. 2007:52(10):1328-47.

Brown SE, Stanbury DW, Merrill EJ, Linden GS, Light RW. Prevention of suctioning-related arterial oxygen desaturation. *Chest.* 1983;83(4): 621-7.

Carmona MJC, Auler Jr JOC. Assistência ventilatória no pósoperatório de cirurgia cardíaca. In: Auler Jr JOC, Amaral G. *Assistência Ventilatória Mecânica*. 1a ed. São Paulo: Atheneu; 1998. p.285-97.

Carvalho ACC, Oliveira EM, Souza JAM. Pós-operatório em cirurgia cardíaca. In: Knobel E. Condutas no paciente grave. 2a ed. São Paulo: Atheneu; 1999. p.1032-42.

Carvalho CRR. Ventilação mecânica I – Básico. 1ª ed. São Paulo: Atheneu; 2000.

Ciesla ND. Chest physical therapy for patients in the intensive care unit. *Phys Ther.* 1996;76(6):609-25.

Clarke RCN, Kelly BE, Convery PN, Fee JPH. Ventilatory characteristics in mechanically ventilated patients during manual hyperinflation for chest physiotherapy. *Anaesthesia*.1999;54:936-40.

Clement AJ, Hübsch SK. Chest physiotherapy by the bag-squeezing method. *Physiotherapy*.1968; 54: 355-9.

David CMN, Machado M, Vianna A, Marinho JM. Complicações da venitlação mecânica in: II Consenso Brasileiro de ventilação mecânica, *Jornal De Pneumologia*. 2000;26(suppl.2):45-54.

Denehy L. The use of manual hyperinflation in airway clearance. *Eur Respir J.* 1999;14:958-65.

Dohi S, Gold MI. Pulmonary mechanics during general anaesthesia. The influence of mechanical irritation on the airway. *Br J Anaesth*. 1979; 51: 205-14.

Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive endexpiratory pressure on the gradient for venous return. *Am Rev Respir Dis.* 1991;143(1):19-24. Girod S, Zahm JM, Plotkowski C, Beck G, Puchelle, E. Role of the physicochemical properties of mucus in the protection of the respiratory epithelium. Eur. Resp. J. 1992;5:477-87.

Guglielminotti J, Desmonts JM, Dureuil B. Effects of traqueal suctioning on respiratory resistances in mechanically ventilated patients. *Chest*.1998;113(5):1335-8.

Guglielminotti J, Alzieu M, Maury E, Guidet B, Offenstadt G. Bedside detection of retained tracheobronchial secretions in patients receiving mechanical ventilation. Is time for tracheal suctioning? *Chest*. 2000;118(4):1095-9.

Guyton e Hall. *Fisiologia Humana e Mecanismos das Doenças*. 6ª ed. Rio de Janeiro: Guanabara Koogan; 1998. p.138-9.

Hanley, M. V., Rudd, T., & Butler, J. What happens to intra-tracheal saline instillation? *American Review of Respiratory Disease*, 1979;117(suppl.):124.

Herbst-Rodrigues MV, Barna JR EJ, Carvalho VO, Rodrigues JR ES, FELTRIM MIZ. Flow, volume and pressure on pulmonary system analysis in the use of manually assisted coughing (MAC), PEEP-ZEEP

(PZ) and PZ without MAC maneuvres. *European Respiratory Journal*, 2005; 26: 498s.

Herbst-Rodrigues MV, Alencar ALN, Cartaxo AM, Ianotti RM, Auler JR JOC, Feltrim MIZ. Compressão torácica manual (CTM) pode aumentar o fluxo expiratório em pacientes sob ventilação mecânica submetidos à cirurgia cardíaca valvar? *Revista Brasileira de Fisioterapia*. São Carlos: UFSCAR, 2006; SET/06: 22.

Hodgson C, Denehy L, Ntoumenopoulos G, Santamaria J, Carroll S. An investigation of early effects of manual lung hyperinflation in critically ill patients. *Anaesth Intensive Care*. 2000;28(3):255-61.

Jones AYM, Hutchinson RC, Oh TE. Effects of bagging and percussion on total static compliance of the respiratory system: *Research Report.* 1992;78(9):661-6.

Kaneko M, Murakami SH, Silva AB. Fisioterapia na ventilação mecânica convencional. In: Knobel E. *Condutas no paciente grave*. 2a ed. São Paulo: Atheneu; 1999. p.1599-609.

Kim CS, Iglesias AJ and Rodriguez CR. Mucus transport by two-phase gas-liquid flow mechanism during periodic flow. *American Review of Respiratory Disease*. 1985;131:A373.

King D, Morrell A. A survey on manual hyperinflation as a physiotherapy technique in intensive care units. *Physiotherapy*, 1992;78:747-50.

King M, Brock G, Lundell C. Clearence of mucus by simulated cough. *J. Appl Physiol.* 1985;58(6):1776-82.

King M. Relationship between mucus viscoelasticity and ciliary transport in guaran gel/frog palate model system. *Biorheology*. 1980;17:249-54.

Kinloch D. Instillation of normal saline solution during endotracheal suctioning: effects on mixed venous oxygen saturation. *Am J Crit Care*, 1999; 8(4):231-40.

Lopez-Vidriero MT. Lung secretions. In: Clarke WS, Pavia D. *Aerosols* and the lung – Clinical and experimental aspects 1^a ed. England: Butterworths; 1984. p.19-48.

Lorenzi G, Bohm GM, Guimarães ET, Vaz MA, King M, Saldiva PH. Correlation between rheological properties and in vitro ciliary transport of rat nasal mucus. *Biorheology*. 1992;29:433-40.

Lum H, Huang I, Mitzner W. Morphological evidence for alveolar recruitment during inflation at high transpulmonary pressure. *J Appl Physiol* 1990;68(6):2280-6.

Macchione M, Guimarães ET, Saldiva PHN, Lorenzi-Filho G. Methods for studying respiratory mucus and mucus clearance. *Braz. J. Med. Biol. Res.* 1995;28:1347-55.

McCarren B, Chow CM. Manual Hyperinflation: a description of the technique. *Aust J Physiother* 1996;42(3):203-8.

Michard F. Changes in arterial pressure during mechanical ventilation. *Anesthesiology*. 2005;103: 419-28.

Nakagawa NK. Efeitos do furosemide, hipovolemia e choque hemorrágico sobre o muco respiratório e a diferença de potencial transepitelial traqueal em cães. [tese]. São Paulo: Faculdade de Medicina. Universidade de São Paulo; 2001.

Paratz J, Lipman J. Manual hyperinflation causes norepinephrine release. *Heart Lung* 2006; 35(4):262-8.

Puchelle E, Zahm JM, Girard F, Bertrand A, Polu JM, Aug F, Sadoul P. Mucociliary transport in vivo and in vitro. Relation to sputum properties in chronic bronchitis. Eur. J. Resp. Dis. 1980;61:254-64.

Puchelle E, Zahm JM, Jacquot J. A simple technique for measuring adhesion properties of human bronchial secretions. Eur. J. Resp. Dis. 1987;71:281-2.

Redfern J, Ellis E, Holmes W. The use of pressure manometer enhances student physiotherapists' performance during manual hyperinflation. *Austr J Physiotherapy*. 2001;47:121-31.

Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G. Reexpansion of atelectasis during general anaesthesia may have a prolonged effect. *Acta Anaesthesiol Scand.* 1995;39:118-25.

Rosner B. *Fundamentals of biostatistics*. 2^a ed. Massachusetts: Pws Publishers; 1986.

Rubin BK, Ramirez O, King M. Mucus-depleted frog palate as a model for the study of mucociliary clearance. *J Appl Physiol*1990;69(2):424-9.

Sackner MA, Landa JF, Greeneltch N, Robinson MJ. Pathogenesis and prevention of tracheobronchial damage with suction procedures. *Chest.* 1973; 64(3):284-90.

Saldiva PHN, King M, Delmonte VLC, Macchione M, Parada MAC, Daliberto ML, Sakae RS, Criado PMP, Silveira PLP, Zin WA, Böhm GM. Respiratory alterations due to urban air pollution: an experimental study in rats. *Environ. Res.* 1992;57:19-33.

Sangean MC. Análise prática da manobra ZEEP [monografia]. São Paulo: Centro de Ciências Biológicas e da Saúde, Faculdade de Fisioterapia, Universidade da Cidade de São Paulo; 1998.

Satir P, Sleigh MA. The physiology of cilia and mucociliary interactions. *Annu. Rev. Physiol.* 1990;52:137-155.

Shumacker PT, Leef AL, *Fisiologia Respiratória – Fundamentos e Aplicações.* 1ª ed. Rio de Janeiro: Interlivros; 1996. p.29 -33.

Singer M, Vermaat J, Hall G, Latter G, Patel M. Hemodynamic effects of manual hyperinflation in critically ill mechanically ventilated patients. *Chest.* 1994;106(4):1182-7.

Selsby D, Jones JG. Some physiological and clinical aspects of chest physhiotherapy. *British Journal of Anaesthesia*. 1990;64:621-31.

Shim C, Fine N, Fernandez R, Williams Jr MH. Cardiac arrhythmias resulting from tracheal suctioning. *Ann Intern Med*.1969;71(6):1149-53.

Stone KS, Talaganis SAT, Preusser B, Gonyon DS. Effect of lung hyperinflation and endotracheal suctioning on heart and rhythm in patients after coronary artery bypass graft surgery. *Respiratory Critical Care*. 1991;20(5): 443-50.

Storm W. Transient bacteremia following endotracheal suctioning in ventilated newborns. *Pediatrics*. 1980;65(3):487-90.

Sutton PP. Chest physiotherapy and cough. In: Clarke WS, Pavia D. Aerosols and the lung – Clinical and experimental aspects. 1^a ed. England: Butterworths; 1984. p.156-69.

Thompson SR. Bronchial Catheterization. *American Journal Surgery*. 1936;31:260.

Tomori Z, Widdicombe JG. Muscular, bronchomotor and cardiovascular reflexes elicited by mechanical stimulation of the respiratory tract. *J Physiol.* 1969; 200:25-49.

Turki M, Young MP, Wagers SS, Bates JHT. Peak pressures during manual ventilation. *Respir Care*. 2005:50(3):340-44.

Tweed WA, Phua WT, Chong KY, Lim E, Lee TL. Tidal volume, lung hyperinflation and arterial oxygenation during general anaesthesia. *Anaesth Intensive Care*, 1993;21(6):806-10.

Unoki T, Mizutani T, Toyooka H. Effects of expiratory rib cage compression combined with endotracheal suctioning on gas exchange in mechanically ventilated rabbits with induced atelectasis. *Respir Care*. 2004; 49(8):896-901.

Unoki T, Kawasaki Y, Mizutani T, Fujino Y, Yanagisawa Y, Ishimatsu S, Tamura F, Toyooka H. Effects of expiratory rib-cage compression on oxygenation, ventilation, and airway-secretion removal in patients receiving mechanical ventilation. *Respir Care*. 2005;50(11):1430-7.

Van den Berg PCM, Jansen JRC, Pinsky M. Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. *J Appl Physiol.* 2002; 92:1223-31.

Windsor HM, Harrison GA, Nicholson TJ. "Bag-Squeezing": A physiotherapeutic technique. Med. J. Aust. 1972;2:829-32.

Zahm, JM; Pierrot D, Vaquez-Girold S, Duvivier C, King M, Puchelle E. The role of mucus sol phase in clearance by simulated cough. *Biorheology.* 1989;26(4):747-52.